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A Theory of the Graceful Complexification of Concepts and Their Learnability

Fabien Mathy and J&| Bradmetz
Universié de Reims ChampagneArdenne, France

Conceptual complexity is assessed by a multi-agent system which is tested experimentally.
In this model, where each agent represents a working memory unit, concept learning is an
inter-agent communication process that promotes the elaboration of common knowledge from
distributed knowledge. Our hypothesis is that a concept’s level of difficulty is determined by
that of the multi-agent communication protocol. Three versions of the model, which differ
according to how they compute entropy, are tested and compared to Feldman’s model (Nature,
2000), where logical complexity (i.e., the maximal Boolean compression of the disjunctive
normal form) is the best possible measure of conceptual complexity. All three models proved
superior to Feldman'’s: the serial version is ahead by 5.5 points of variance in explaining adult
inter-concept performance.

Computational complexity theories (Johnson, 1990; Las<1987; Kolmogorov, 1965) and the “organized, highly struc-
saigne & Rougemont, 1996) provide a measure of complextured, information-rich” organized complexity (or Bennett's
ity in terms of the computation load associated with a pro-ogical depth, 1986). Algorithmic complexity corresponds
gram’s execution time. In this approach, called the structuralo the shortest program describing the object, whereas the
approach, problems are grouped into classes on the basis lofjical depth of that program corresponds to its computa-
the machine time and space required by the algorithms useébn time. Working in this framework, Mathy and Brad-
to solve them. A program is a function or a combinationmetz (1999) were able to account for learning and catego-
of functions. In view of developing psychological models, rization in terms of computational complexity and logical
it can be likened to a concept, especially whgndomain  depth. They devised a concept-complexity metric using a
[y = f(x)] is confined to the values 0 and 1. A neighboring multi-agent system in which each agent represents one unit
perspective (Delahaye, 1994) aimed at describing the conin working memory. In this model, a concept’s dimensions
plexity of objects (and not at solving problems) is usefulare controlled by informationally encapsulated agents. Cat-
for distinguishing between the“orderless, irregular, randomggorizing amounts to elaborating mutual knowledge in the
chaotic, random” complexity (this quantity is called algorith- multi-agent system. This model of complexity is grounded
mic complexity, algorithmic randomness, algorithmic infor- in an analysis of the complexity of the communicative pro-
mation content or Chaitin-Kolmogorov complexity; Chaitin, cess that agents must carry out to reach a state of mutual
knowledge. Less concerned with psychological modelling,
Feldman (2000) proposed a theory he presents as inaugural
(“... the relation between Boolean complexity and human
. ) ) ) learning has never been comprehensively tested”, p. 631),
FCgrres&onﬁem(::e CO”C?m'”dg th'sl. article dShOU'ﬂ behaddrefs‘_’é‘rguing that the complexity of a concept is best described
to Fabien Mathy, Centre interdisciplinaire de recherche en lin,4ha compression of its disjunctive normal form (i.e., a dis-

uistique et psychologie cognitive (CIRLEP), Univegsite Reims . . . . .
?Zharr?pagne?Aydenneg,] UFIg Lemés ot S():iences Humaines, gfyinction of conjunctions of features). Feldman supported this

rue Pierre Taittinger, 51096 Reims Cedex, France (e-mail: fald®2 With an experiment (after learning, recognize computer
bien.mathy@free.fr. images of artificial amoebae of a given species that differ

in size, shape, color, and number of nuclei), but no alterna-
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tive models were tested. Given the interest this model ha A B.
aroused and its tempting simplicity, an experimental com- Bi’e/"
parison with our model seemed indispensable. Red

Our model of working memory communications can be
readily related to the working memory functions described Small I
in earlier research. When conceptual complexity is assesse sig
using a multi-agent model, working memory can be jointly
described by the number of units required and by the com
munication operations they must carry out. Working mem-
ory communications correspond to the operations controlle Square
by the executive function; the number of units simply corre-
sponds to the storage capacity. The processor, or executive ~ Figure 1 lllustration of a three-dimensional concept.
function, has been described as a residual domain of igno-
rance (Baddeley, 1986, p. 225), although it has been widely
studied in psychometrics for its assumed relationships witiBourne (1970); Bruner, Goodnow and Austin (1956); Levine
factorg (Crinella & Yu, 2000). The task-switching paradigm, (1966); Shepard, Hovland and Jenkins (1961).
for example, has been used to directly study executive con- The positive cases are shown as a black dot. Suppose
trol (Gilbert & Shallice, 2002). For instance, in Anderson’s the examples are geometrical objects. The upper and lower
(1983) adaptive character of thought theory (ACT), the com{faces aresmall andbig objects, the left and right faces are
putational aspects of rule processing are opposed to declareeund and squareobjects, and the front and back faces are
tive elements like facts and goals; see also Anderson’s (1993gd andblue objects. Using classical formalism of proposi-
revised theory, ACT-R, and Newell’s (1992) rule-productiontional logic, we say that X is a positive example if:
model, SOAR. However, in both models, no capacity limit is
set for working memory. In Baddeley’s (1976; 1986; 1990, X =111v110v010v000= (11«)V (0x0)
1992) well-known model, we find functional mdependenceIn other words,X is a positive example i is (Rounda

between the processor (limited capacity) and memory spa, S .
(also limited), but most research based on this model hagrzréalsl)r;l/a(ﬁ%ﬂazrseé\u;eeo)agde.F,hlar:j)r;atural language : (Round

been confined to measuring memory span. Similarly, in his : : .
neo-Piagetian studies, Pascual-Leone (1970) reduced the eI)é-The information content of a sample of examples is then

ecutive component of working memory to the capacity for duced to a set of pertinent information, in order to get an
itive comp Ing ory Pacily 1or e - onomic way of describing a concept. Learning in this case
maintaining at least one unit in working memory. We shall

gef:m be assimilated to a compression of information. The de-

ts)?)?htthhzg ézicrﬂg\lfgi%ﬁqmOﬂgg?fﬂg?’;ﬁ?g& hee::eomcg:]%?]r? ee of this compression defines the compressibility of the
P 9 P ‘concept. For example, the learner can reduce a concept to a

The purpose of the present article is to prov!(je an 'n}rule. The multi-agent model proposed here has been devel-
depth presentation of a theory of graceful complexification Ooped to model the compression of a concept. We assume
concepts (i.e., continuous and non-saltatory/ non-stepwis hat each dimension of a concept is identified by a single
Egef:\/lc%lglland,dRuTAel?hartéL%PIZ(;P Fiesigrgcgh Gro(;J?, 1986 gent. When communicating agents exchange minimal in-

retly addresse |,n athy radmetz ( ), and to COMt5rmation to learn a concept, we measure the compression of
pare it to Feldman’s (.2000) theory. L|ke.FeIdman, WE reprépe minimal communication protocol they used. This min-
sent concepts as having a component-like structure obtalnq

b tenati ;  feat bi for th K al communication protocol can correspond to the formal-
y concatenating a series of features (binary for the sake 9m of propositional logic with its use of disjunctive and con-

simplicity; n-ary would simply lead to a com_binatory burst). junctive operators. The objective of the multi-agent model
V\r/1e ?ISO f?‘”a'yzth eldmar:s tmoddel and pom:hou: five of dlt is to describe several ways to obtain a compressed propo-
shortcomings. en we test and compare the (o Modelgiiong| logic formula. Because the multi-agent system is an

experlr_nental_ly. . . _ instantiation of a working memory model, these several ways
Setting aside philosophical problems attached to a view 0f, jnqyce a concept will be developed according to different
concepts that rests primarily on the composition of their un-.;nsiderations of working memory. The model is presented
derlying dimensions and the possibility of expressing themg yetail in appendices 1 until 4.
in a Boolean fashion (for a thorough discussion of this point,
see Fodor, 1994), we retain the possibility of (i) using a seParallel, Serial, and Random Versions of the Multi-
of examples defined by the number of dimensions (e.g., "Agent Model
three binary dimensions, shape (round or square), color (blue
or red) and size (big or small), the space of examples con- Parallel version.The appendix 4 gives a detailed presen-
tains 23 or 8 elements), (ii) using a Boolean expression tdation of how multi-agent processing works. The cube-vertex
define subclasses of positive and negative examples that raumbering system used throughout this article is given in
spectively do or do not represent the concept, and (iii) asFigure 1B. In this presentation, it is assumed that entropy,
signing each concept a function that separates the positiviee., the amount of information supplied (see Tables 7, 8,
and negative examples (Figure 1). This view was initiated byand 9), is calculated for each example presentation. This
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Table 1 positive and negative example of Concept 6 possesses a ho-
Cost of each example in Figure 1, for the random version. molog on one side, so two agents will always suffice to iden-
Examples tify it. We therefore writeX® A Y& or simply X A Y, where
Oder 1 2 3 4 5 6 7 8 Total the absence of an exponentis equal to an exponent of “8”
FESC 2 2 2 3 2 3 3 3 20 by default. This formula means that for the eight cases of
FCS 3 3 3 2 3 2 2 2 20 the concept, two agents will be necessary and sufficient each
SEC 2 2 2 3 2 3 3 3 20 time. For Concept 9, we can see that all negative examples
SCE 3 2 2 3 3 2 2 3 20 have a homolog on one side so they can be identified by two
CES 3 3 3 2 3 2 2 2 20 agents, but the positive examples are isolated so they will
CSF 3 2 2 3 3 2 2 3 20 need three agents. This is writtéhA Y[Z]2, meaning that
Total 16 14 14 16 16 14 14 16 120 two agents will always be necessary, and in two cases they

will not be sufficient and a third agent will have to contribute.

Looking at Concept 12, we find that four cases (all negative)

are located on a side with a homolog so two agents will be

is a strong hypothesis that induces a parallel version of th@ecessary and sufficient, but the other four are isolated and

model. therefore require three agents. This is denotedY[Z]*.
Serial version.One can also assume that entropy is cal-The formulas for the serial and parallel versions are given in

culated once and for all for a given concept, and that eaclFigure 2.

example presented will be analyzed using the same commu-

nication protocol. In this condition, the order of the agentsFeldman’s Model (2000)

is identical for all examples of the concept. This is the way

o . Feldman examin itive exampl nly, which h
a traditional system of rules operates because commumcaé—n urigra?es ?na dis'Er?ctFi)v%S tno?mitlafofrﬁs([;)Ngj (seec alsg
ing occurs in a serial manner and in a fixed order. To mak )

the model’s identification process clearer, each formula ca eldman, 2003, for a complete classification of Boolean

be represented by a decision tree that gives the order of th%qncepts from one to four dimensions). lllustrating

: . h the concept in Figure 1 again, if we distinguish
speakers. Figure 2 presents these trees, which are read ' , :
follows: the root of the tree represents the choice to be mad?érglund)ih f (sql{!are, S(b'lg)’ s’(smf[atll), c(red), and
by the first speaker, AgerX, the branches down the next (blue), the positive examples are written
node arer’s, and the branches down the lowest nodeZse 1= fdd, 2= fdc, 6= f'dc, 8= f'sc
A look at the simplest and most typical cases (1, 2, 6, 13) , )
will make the others easier to understand. and the concept is written

Random _vers_ionl.n the third version of the model, called (FASAC)V(FASAC)V(F ASAC)V(F ASAC)
random, it is simply assumed that for each example pre-
sented, the agents express themselves in a random‘ordebsing a heuristic that is not described in depth, Feldman
Each concept can be assigned a number which is the mea&tates that the maximal compression of this DNF would be
number of agents that have to express themselves in order @\ (sA f)'V (¢ AS'A ). Here, the notation system of propo-
identify the eight examples. As in the other versions, positivesitional logic, based on Morgan’s law, is used to go from one
and negative examples are treated equally. In illustration, letonnective to the other by means of negation (denoted by
us again consider the case in Figure 1 with the vertex numan apostrophe)(sA f)’ = (s'v f’). Then the author counts
bers shown in Figure 1B. For each vertex, there are six possthe number of letters in the compressed formula and draws

ble speaking orders among the agents Form, Size and Coldirom it the complexity index for that concept. Apart from its
predictive value, this model calls for five remarks.

FSCFCSSFC SCECFSCSE 1. It moves immediately from the DNF of a concept to
its complexity, without trying to support the psychological
For each of the eight vertices and the six orders, the idenplausibility of this transition, that is, without attempting to
tification process has a cost (cf., Table 1). The mean cosiome closer to a plausible way of functioning for working
of identifying the eight examples of a given concept (i.e., thememory, even a relatively global and abstract one.
number of agents who will have to speak) is 126- 15, and 2. For the model to be granted the universality it claims to
the variance is 1. Figure 2 gives the costs of all concepts. have, certain choices made in elaborating the formulas need
L. to be developed and supported. Why was the DNF chosen?
Communication Protocols What makes the connectivesand Vv superior to others for
If we identify agents by their speaking turd§ Y, Z, modelling cz_itegoriza_tion? What compression heuristics are
and we retain the operators(necessary) and [ ] (optional), us_ed? Why is an arbitrary, fixed order employed for enumer-
every concept can be associated with a formula that corre2ting the binary features of the concept?
sponds to a communication protocol and expresses the total 1 Thjs principle is similar in some ways to the one defended
information-processing cost for its eight examples. Conceptgy pascual-Leone (1970), who uses the Bose-Einstein occupancy
6, 9, and 12 in the parallel version of the model will be usedmodel of combinatorial analysis to describe the activation of
here to illustrate how these formulas are determined. Eactvorking-memory units.
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3. There is an error in the model, related both to the opaca concept by taking the sum of all calls to all agents that
ity of the compression technique and to the arbitrary or-occur while the concept's eight examples are being identi-
der adopted for concept features. A simple method calledied. These indexes, which indicate the logical depth of the
Karnaugh-Veitch diagrams, which can be easily applied byconcept, are given in Figure 2 for the various versions of the
hand (Harris & Stocker, 1998; alu, 1999), indicates that model.

Concept 7 (precisely the one used as an example) has a maxi- Now let us present the method that enables us to com-
mal compression of 4, not 6 as the author states, since the fopare the four measures of conceptual complexity: multi-
mula(f ASAC)V(FASAC)V(f'ASAC)V(f'AsAc)can  agent serial, parallel, and random complexity, and Feldman’s
be reduced tgs A f) Vv (cA f’), which describes themall ~ Boolean complexity.

round examples and theed squareexamples.

4. The author briefly mentions prototype theories in his METHOD
conclusion, without indicating how his construction could be .

a model of them. Subjects

5. Itis not clear why positive and negative examples are Seventy-three undergraduate and graduate students (29
not treated equally and why they even constitute a complex-

ity factor independently of Boolean complexity. This pointxmen and 44 women) between the ages of 18 and 29 (mean

is simply linked to the method used by the author and is no

an intrinsic characteristic of concepts. In our method, as Werocedure

shall see, symmetrical processing of positive and negative

cases eliminates this source of variation. A computer-assisted learning program was written (avail-
The concept-complexity indexes derived from Feldman'sable at http://fabien.mathy.free.fr/). A standard concept-

model (corrected for Concept 7) are given in Figure 2. Tolearning protocol was used: examples were presented in suc-

facilitate comparison with the other indexes, we multipliedcession to the subject, who had to sort them by putting the

{age: 21 years 7 months) participated in the experiment.

them by 8. positive examples in a “briefcase” and the negative exam-
ples in a “trash can”. Feedback was given each time. The
Concept Learnability examples were generated from three dimensions: (i) shape

(square, oval, or cross), (ii) color (red, blue, purple, or green),

A concept is a discriminant function in a space of exam-and (iii) the type of frame around the colored shape (diamond
ples. The simplest discrimination is linear separability, theor circle). Many shapes and colors were used so that on
kind a perceptron can achieve without a hidden layer. Lin-each new concept, the examples would look different enough
ear separability supplies a measure of complexity, but it igo avoid interference and confusion with the preceding con-
insufficient because it performs an undifferentiated classificepts. For each concept, the dimensions were of course used
cation that puts a whole range of cases with interactions ofnly in a binary way in the entire set of examples (e.g., square
variable complexity under a single labélseparable The  vs. oval or square vs. cross).
multi-agent model conveniently offers the possibility of as- A set of examples was composed of a subset of positive
signing each concept a particular Boolean function, whichexampleséx+); its complementary subset was composed of
provided one is able to order those functions — we shall segegative examplesk—). This partition defined the target
later how a lattice can so just that — considerably enrichesoncept. When the image displayed on the computer de-
the separable versus non-separable model. In this case, gucted arex+, the learner had to click on the briefcase drawn
ery function used has a corresponding Vapnik-Chervonenkig a window designed for that purpose; ar- had to be
dimension Y C) (see Boucheron, 1992) and exhibits betterput in the trash can shown in another window. Clicking the
case discriminatioh mouse in either of these windows caused the other window

Between learning and knowledge activation there is idento disappear so that the feedback would be clearly associ-
tity of form. When a learning master supplies answers, th@ted with the clicked window. Each correct answer was re-
subject learns to identify the stimulus and to associate it wittwvarded with a “Bravo” heard and displayed in the feedback
a subclass (positive or negative); in other words, novices dwindow. When an incorrect answer was given, a message
the same thing as when they know the concept and activat¥as displayed saying “Not in the briefcase” or “Not in the
their own knowledge. One can thus assume logically thatrash can”, depending on the case. All feedback messages re-
the time taken to identify an example and assign it to themained on the screen for two seconds. A “Too late” message
correct subclass once the concept is learned is proportion@ias displayed after eight seconds if the subject still had not
to the concept’s complexity, and also that the learning time;——— o . ) - .
i.e., the time taken to memorize the subclass to which each ~ Staying within the domain of linear separability as it is com-

: : , .. puted by a perceptron without a hidden layer, Yhe dimension,
g;(a\llmle belongs, is proportional to the concept's COmplex'“?or 3 dimensions, is equal to 4, that is, the perceptron can separate

. . . . all subsets of 4 vertices obtained by bi-partitioning the vertices of
A hierarchy of concept complexity up to three dimensions, cype, provided the 4 vertices indeed define 3 dimensions and not

can be proposed, based on the ordering of multi-agent fofjust the 4 corners of a square. For cube example sets with more than
mulas in a Galois lattice (Appendix 3, Figure 12). However,4 members, linear separability still may be possible, depending on
it is more practical to assign an overall complexity index tothe case, but it is not necessarily so.
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N°. Concept P S Tree rPC SC RC FC
8
1 X’ X 8 8§ 12 8
) X [YF X [yr 10 12 12 16

X yizpp X [Y[ZFT 10 14 105 24

X Yizrer X IY[iZrr

123 14 135 24

X [YIZET X8 [YAZF 14 16 14 40

XeAY? X°AY® 16 16 16 32

XéAY® XAY? [7]* 16 20 15 32

XAYS [Z]F XAYP [Z)? 17 18 155 40
18 20 15 48

XeAYS [Z]2 XAYE 7]

18 20 15 48

p—
)

<DL DDODIDDOL

XeAYS (22 XAYE 7]

11 18 20 16 48

XAYS [Z]? XAYS [Z]°

Ju—
NS}

XAY? [Z]° XAY® [Z]° A 20 22 165 64

13 XAYAZ XAYAZS 24 24 18 80

Figure 2 Formulas and decision trees for concepts up to three dimensiote. P communication protocol formula for the parallel
model. S: communication protocol formula for the serial modBIC, SC RC, FC: complexity index for the parallel, serial, random, and
Feldman (2000) models, respectivel’q choices are shown as a solid lin€s as a black dotted line, arifis as a grey dotted line).
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Figure 3 Possible ways of representing Boolean dimensions as ~ Figure 4 Boxplots of learning times for the 13 concepts.

physical dimensionsNote. Representatiom: numerical facilita-

tion. Representatioh: spatial and numerical facilitation. Repre-

sentatiorc: separable dimensions are amalgamated. ing allowed us to look solely at the total learning time, which
was the most highly correlated with the complexity indexes
for the four models.To avoid any effects brought about by

clicked on the briefcase or trash can, and the next examplihe extreme scores (which can easily be seen in Figure 4), the

was displayed; this message kept the game going and avoidéshrning times for each subject were transformed into ranks

unnecessary use of time. The time limit of eight seconds wagT R) by attributing ranks 1 to 13 to the concepts (rank 13 was

assessed by means of various surveys which yielded a latgven to the concept learned the fastest so the coefficients in

response rate of less than 1%. Eight seconds is obviously ntiie regression analyses would remain positive).

an absolute response time but simply served here as a meansyq, to compare the four models and identify the sources

of putting "?‘" s_ubjects in the same situation. The conceptyt \ariation in performance, we chose a linear regression
learning criterion was deemed to be reached when the sul}-

: . >~analysis. Two explanatory variables (independent by con-
ject correctly sorted 16 .consecutlve examples. Every.t'mestruction) were selected: the presentation raPR)(of a
a correct answer was given, one of 16 S”.‘a” squares In thSoncept (drawn at random during the experiment) and the
progress bar was filled in (in black). Subjects could there'complexity index of each modeSC, PC, RC, andFC, for
fore see their progress atany time. Three blapk squares wegg, complexity indexes of the serial |c;aral,lel randbm and
erased if the subject responded too late. A mistake erased ' i y

; X ; : [dman models, respectively). The presentation r& (
previously filled-in squares and reset the learning counter has included because learning time decreased as the rank for
zero.

. . . . . _learning a concept increasdd((2,72) = 9.7, p < .001), as
All three dimensions were represented in a single figurgngicated in Figure 5. The dependent variable was the total
(e.g., an example could berad squarewith a diamond

L . ; ; . learning time rank TR) of the concept among the 13 that
around it) in order to avoid spatial representations (in case _Ox.fach subject learned. The regression analysis was applied to
an example represented by three present or absent forms i

M four complexity indexes. The results are presented in Fig-
row). Spatial representations would have facilitated learnin prextty p 9

L . . Qre 6. The amounts of variance explain®d)(by comput-
(see examples in Figure 3). The dimensions were also représg 4 myltiple regression on the concept-presentation ranks
sentative of separable dimensions permitting independent d R and on each complexity index were .423, .418, .400,

mension processing (as opposed to integral dimensions; segq 363 for indexeSC PC, RC, andFC, respectively. Al
Garner, 1974). , _ _ of the analyses of variance on the multiple correlations were
The dependerlllt variables were (i) the time taken to Iear@igniﬁcam £(2,946) = 347, 340, 315, and 270, respectively,
the conceptT), (i) the total number of responses (i.e., the , - 001). The results of thetests applied to paired corre-
number of examples used}) and (iii) the number of errors  |ations (i.e., to the regression line coefficients) between each
made E). of the complexity indexes and the learning time rank&)
are given in Table 3. The models were ordered as follows:
RESULTS S> P > R > F. Thus, all three multi-agent models turned
out to be superior to Feldman’s model (2000). The serial,
Table 2 shows that the correlations between the three dgparallel and random models (which were statistically indis-
pendent variables were greater th@h, p < .01. This find-  tinguishable) are significantly better than Feldman’s model.
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Table 2
Correlations between the complexity indexes and the scores.
SC PC RC FC TR T R

PC .958*

RC 84T 940+

FC 925 957 .843*
TR 576 S574+ 559 533~

T .363* .380* 374 364 .646"*

R 351 367 .359* .353* 637 .978*

E .335* .358* 357 .339* 612 .953* .965*

Note. T Rtotal learning time rankT: total time.R: number of response&: number of errorsSC. serial complexityPC: parallel
complexity. RC: random complexityFC: Feldman’s complexity (2000):: correlation is significant at the 0.01 level (two-tailed).

Table 3 200
Values of Student’s t between correlations.

I'TrR.PC I'TRRC I'TrRFC d
I'tr.sc 0.26 1.15 4.16 6001
ITR.PC 1.63 5.26*
I'TRRC 1.73

5001

Note.*: significant at p< .05.**: significantat p< .01. TR
learning-time rankSC serial complexityPC: parallel complexity.
RC. random complexityFC: Feldman’s complexity (2000). These 4001
t-values on non-independent samples were calculated using
Steiger’s (1980) formula (see Howell, 1997, p. 300).

3001

Mean Learning Time

The superiority of the serial model points out the merits of 200
modelling information processing in working memory using t2 3 4 5 6 7 8 9 10 11 12 13
models that process information in a fixed order.

Regressions on the mean learning times were also ca.
culated. Let us compare the two models that differed the.. S .

. . . . .. Figure 5. Mean learning time in seconds, by presentation rank of
most as to their prediction of learning time (Feldman’'s
; - the 13 concepts.

model and the serial model). The amount of variance ex-
plained by Feldman’s model in this condition was greater
(R? = .815 F(1,11) = 49, p < .001) than the serial model
(R = .808 F(1,11) = 46, p < .001), although the differ-

ence between the regression line coefficients was nonsigni : : e . . :
icant ¢(11) — —0.8, NS. In illustration, Figure 7 shows ut also in their clarification of dimension processing.

the regression line between the mean learning times and thﬁlgvr;%;]lh% rggtj?ggsamggig;&ﬂtﬁ%‘;ﬁgﬁiﬂ?i'ﬁfé?g:gggx
serial complexity indexes of the concepts. This finding in- d

3r.;_wrocessing (serial, parallel, or random). Our results showed

Concept Presentation Rank (PR)

account in terms of positive and negative examples (unlike
Eeldman’s model which looks solely at positive examples),

dicates that, despite the greater readability of the results, r at the serial model is the best model because it imposes a
gression calculations on mean learning times (the basis P

Feldman’s calculations, 2000) do not point out which models'xfEd mformatlon-processw_lg order. One reason vyhy It pre-
best fit the dath vails over the other three is certainly due to relatively con-

stant patterns within noun phrases in natural languages (e.g.,
big red roundinstead ofround red big. The phrase’s sta-
DISCUSSION bility seems to be rooted in stylistic considerations, which

impose a certain order when features are being enumerated.

One of the goals of this study was to evaluate Feldman'syyiq \youid fix their order during stimulus rehearsal. Besides,

(2000) model of conceptual complexity with respect to a se;, the three multi-agent models developed here, the com-

ries of multi-agent models developed to be analogous to the

funCtlonmg of working memory. The results .S‘howed that a”, 3 Pascual-Leone (1970) obtained excellent fits between theoret-
three multi-agent models tested are superior to Feldmana,| 5ng experimental curves using this same technique. By taking
(2000) for the regression of learning-time over the set Ofiyterindividual variability into account, Bradmetz and Floccia (sub-
three-dimensional concepts. The difference between Feldnitted) showed with a LISREL model that a large part of the vari-
man’s model and the multi-agent models lies not only inance is not explained by Pascual-Leone’s model and that the data fit
the fact that the latter take the complexity of a concept intoshould therefore be rejected.
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Figure 6 Linear regression for the four complexity moddiote. PR presentation rankT R learning-time rankSC. serial complexity.
PC: parallel complexityRC. random complexityFC: Feldman's complexity (2000).
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it imposes an unchangeable order for nodes at different tree
depths, the serial multi-agent system can be reduced to a
production system like that found in the symbolic approach
to reasoning (Newell, 1983, 1990, 1992; Newell & Simon,
1972; Anderson, 1983; Holland, Holyoak, Nisbett, & Tha-
gard, 1986). In the latter approach, reasoning is based on
rules whose complexity depends on the nested hierarchiza-
tion of a set of variables (an idea also found in developmen-
tal psychology in Zelazo, Frye, & Rapus, 1996). Our paral-
lel and random multi-agent models, however, go beyond the
traditional representation in decision-tree format, which im-
poses a predefined order on the dimension hierarchy. As for
the random model, it has even fewer order constraints than
the parallel model: it does not need to compute entropy since
agents randomly put in their information until the examples
are identified. In this case, the amount of information needed
only depends a posteriori on a concept’s entropy (since the
savings in terms of fewer speaking turns still depends on the

Relationship between mean learning time and serial€Oncept’s structure) and not on an a priori calculation of the

concept-complexity indexes.

concept’s entropy. Feldman’s model makes a clear distinc-
tion between the number of pieces of information (connected
by conjunctions) needed to classify examples in disjunctive

munications corresponding to the executive part of working@rmat (1, 2, or 3 pieces). However, in addition to informa-
memory processing is represented by decision trees. Becaut@h quantity, multi-agent models distinguish several operat-
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ing modes by introducing the idea of information ordering. RESUME

To draw an analogy, multi-agent models would not only ac-

count for the number of digits (or chunks) to memorize in  Cet article propose un metk et uneevaluation exprimentale

a telephone number, but also problems of order and simule la complexié des concepts au moyen d'un gyse multi-agent
taneity in chunk addressing or retrieval. This kind of infor- dans lequel chaque agent regpente une uréten némoire de tra-
mation is critical because (depending on the chosen paranyail. Ce mogle concoit I'apprentissage de concepts comme une
eters) it may lower the amount of information that has to peactivite de communication inter-agents permettant de passer d'une
supplied to classify an example. The amount of informationconnaissance distribe explicitea une connaissance commune.
required per example is therefore not an absolute measutkéypothese est que le degde difficule d’'une &che de concep-
derived from disjunctive normal forms, but a relative mea-tualisation est dtermiré par celui du protocole de communication

sure that depends upon the type of processing carried out dffer-agents. Trois versions du migd, differant selon le mode de
the information. calcul de I'entropie du sysime, sont teges et sont compaes au

modcele que Feldman (Nature, 2000)egente commedéinitif, en

) o _ réduisant la complexét d’'un concepti la compression maximale
Another point concerns the originality of representing ge sa forme disjonctive normale béehne. Les trois versions du

working memory processing in terms of communication pro-mogle se évélent sugrieures au mase de Feldman : la version
tocol formulas. The expressive power of communication for-saquentielle gagne 5,5 points de variance dans explication des per-
mulas for describing Boolean functions is no greater thangrmances inter-concepts de sujets adultes.

any other type of formalization, but their compressibility is

greater. By reducing the decision-tree structure to binary REFERENCES

communication operators, formulas offer a compressed rep-

resentation of working memory operations. The agents who Anderson, J.R. (1983).The architecture of cognition
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Pascual-Leone, J. (1970). A mathematical model for thek Vardi, 1995). Based on the choice of a few basic properties
transition rule in Piagets developmental stagesa Psycho- related to how working memory functions, we shall present

logica, 32 301-345. three versions of the model: parallel, serial, and random.
Quinlan, J.R. (1986). Induction of decision treeda- Let us start from the following assumptions:

chine learning, 181-106. 1. Each agent has information about a binary dimension
Ruth, M., & Ryan, M. (2000)Logic in computer science (so there are as many agents as there are dimensions) and

Cambridge, UK: University Press. knows the composition of the positive and negative subsets

Selfridge, O. (1959). Pandemonium: a paradigm forof examples. If, for instance, small red circleis pre-
learning. InSymposium on the Mechanization of Thoughtsented, the size agent knosmall (not big), the color agent
ProcessesLondon: HM Stationery Office. knowsred (notblue), and the shape agent knowiscle (not

Shepard, R. N., Hovland, C. L., & Jenkins, H. M. (1961). squard. But each agent is unaware of what the others know,
Learning and memorization of classificatioRsychological  which means that full knowledge of the concept is distributed
Monographs, 75n13, 1-42. among them.

Steiger, J.H. (1980). Tests for comparing elements of a 2. Agents take turns making the information they have
correlation matrixPsychological Bulletin, 87245-251. public. The process ends when the publicly shared infor-

Vélu, J. (1999). Méthodes matmatiques pour mation suffices for someone who knows the composition of
linformatique. Paris: Dunod. the positive and negative subsets (i.e., the concept) — and this

Zelazo, P. D., Frye, D. & Rapus, T. (1996). An aged-is the case for all agents — to assign the concerned exemplar
related dissociation between knowing rules and using themio the right subclass.

Cognitive Development, 187-63. 3. As common knowledge is being built, speaking turns
are assigned on the basis of an entropy calculation, which
enables agents to compare the amounts of information they

. are capable of contributing (see Quinlan, 1986, for a method
Received June 11, 2003 Accepted November 24, 2003 o calculating entropy suited to the construction of trees that
minimize the information flow). If a fixed rank for commu-
nicating information is set for each agent, identifying the ex-

ample would amount to finding the path in a decision tree
APPENDICES called an OBDD or ordered binary decision diagram if the
Appendix 1. Multi-Agent Models dimensions are Boolean (see Bryant, 1986; Ruth & Ryan,

2000). This option will be chosen below when we develop

Multi-agent models are collective problem-solving meth-the serial multi-agent model. The originality of the parallel
ods. Although this idea is relatively old in psychology (Min- multi-agent model (which will be described to the greatest
sky, 1985; Selfridge, 1959), it was not until recently that sim-extent in this study) lies in the fact that speaking turns taken
ulations of agent societies and their evolution in computeiby agents to release their partial knowledge are not controlled
science were developed (Brazier, Dunin-Keplicz, Jenningsa priori but are calculated at each occurrence. When an agent
& Treur, 1995; Burmeister & Sundermeyer, 1990; Crabtreereleases a piece of information, it knows how much its con-
& Jennings, 1996; Epstein & Axtell, 1996; Ferber, 1999;tribution reduces the uncertainty, since it knows the target
Gilbert & Conte, 1995). Despite a number of attempts tosubclasses of positive and negative examples of the concept
devise general models (Ferber & Gutknecht, 1998; Kendalland it also knows what subset (and the positive and negative
Malkoum, & Jiang, 1995; Nlller, 1996), there has been no examples it contains) itis leaving for the agents that follow it.
architectural standardization. Multi-agent systems draw theiffake a three-dimensional space whose dimensions are shape
inspiration from Minsky (1985), who developed the idea of (hereafter labeled F for form, C for color and S for size).
a society of mindaccording to which a mind can be con- If the subclass of positive examples includessafiall round
structed from numerous small parts each of which is mindexamplessmall redexamples, anced squareexamples (see
less. According to this principle, in a multi-agent system,Figure 1), and amall round blueexample is presented, the
competence is not centralized but distributed among differshape agent, by statingdund’ cuts the uncertainty in half
ent agents who communicate with each other. The key nowo pieces of information suffice to identify the example and
tions are usually collaboration, competition, communication,it gave one; the other will be size). But the color agent will
and self-organization. These models have been applied, famly reduce the uncertainty by a third since the other two will
instance, to modelling economic and social problems (Axelhave to express themselves after he does. In this example,
rod, 1997), and articles devoted to them are abundant todaye shape agent or the size agent can thus declare a greater
in journals of computer science theory. reduction in uncertainty than the third agent can, and one of

In the model proposed here, we assume that each dimethem (say, drawn at random) will speak first. Turn-taking is
sion of a concept is identified by a single agent, and thathus determined by the information furnished and not by the
information must be exchanged until the example presentetype of dimension evoked. Thus, for a given concept, differ-
can be identified as a positive or negative example. ent examples can give rise to different speaking turns. If, for

The general problem is one of going from distributedthe concept described above, graall red squarexample
knowledge to common knowledge (Fagin, Halpern, Mosesis presented, the shape agent will still speak first, but this
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time, it is the color agent and not the size agent who speak ﬁ ; '
in second place. The identification of examples in the case ¢ ! 1 8 § b

pre-determined speaking turns would be written as follows:

Figure 8 Uncertainty cases with 2D concepfsote. Identifica-
tion achieved (no speakers necessaty)Choice (one speaker suf-
. o ) ) ) fices). SandS: simple interaction (one or two speakers necessary,
Now writing this in terms of speaking turns with maximal depending on the case: dual interaction (two speakers always
informativeness, we get necessary).

FA(SvC)

XAY

. denotedX, suffices to remove the indetermination. (Remem-
whereX, Y, etc. are the agents (of any kind) who speakper that labels are assigned to speaking turns, not particu-
first, second, etc. In other words, no matter what exampléear agents:X is not the color agent or the shape agent but
is presented, two pieces of information will suffice to assignthe agent who speaks first, because it is the one (or among
it to the correct subclass. The speaking order of the agentfe ones) who provides the most information.) In cBse
thus depends upon the amount of information contributedyhether a positive or negative example is at stake, two agents
the most informative speaks first (or, in case of a tie, one ofqust speak upX andY. In caseS, identifying one of the
the most informative), and so on. To make this process morghree positive examples requires only one agent because the
concrete, imagine a card game where, before a round, eaghree examples are in a disjunctive relation (esquareor
agent states how much he will reduce the uncertainty by maked). On the other hand, identifying the negative example
ing a bid or laying down a card. We call this model parallel, requires the participation of two agents (as in the atibue
not because the agents talk at the same time but because thgyind example). In cas8, we therefore sometimes ha¥e
simultaneously and independently calculate how much they3/4) and sometimeX AY (1/4). This is a particular dis-
can each reduce the entropy. junction since it isX VY with X always present. Using the

4. During knowledge building, silences are not interpretednotation of propositional logic, this case is writt¥n[ Y ]

in example assignment. Suppose the positive subcldsg is (affirmative connective oX, for all Y) whose truth table is:
squarefigures,big bluefigures, andlue squardigures. The

example presented isteg red roundfigure. By announcing X X[Y] Y
“big”, the size agent makes it impossible for the other two 1 1 1
agents to individually give a decisive piece of information. 1 1 0
If they mutually interpret their silence (as in the “Game of 0 0 1
Hats”; see Nozaki & Anno, 1991), they would arrive at the 0 0 0

conclusion that it is aed roundfigure. Another important

feature of the model is the mandatory dissociation between CaseS has exactly the same structure as cgsexcept

the information an agent thinks it will contribute and the in- for the fact that the proportions of positive and negative ex-
formation it actually does contribute. Sometimes the two co-amples are reversed. Cdsis trivial - no information is nec-
incide and sometimes uncertainty remains (as in the abovegssary. Casb is a complete interaction because the decision
example). Before systematically developing this point, let ussannot be made, regardless of what one agent responds, un-
take another example from the concept in Figure 1shhall  |ess he knows the other agent’s response. CaseslS are

red roundexample is presented, the shape agent knows thafartial interactions between the two dimensions. Thus, when
one speaking turn will suffice after his own. If, for that exam- just two dimensions are considered, there are only three ulti-

ple, the color agent had spoken first, then it would be uncermate forms of inter-agent communication. They are written:
tain about its real contribution: when it sees, it can say to

itself (remember that each agent knows the target subclasses) X; X[Y]; XAY

that if the example ismall or square a single speaking turn

will suffice, but if it is big andround, then two speaking turns

will be necessary. It cannot in fact know exactly how many Whenever additional dimensions are considered, they will
agents will have to speak about a particular example after ibe either necessary or optional. One can thus deduce thatin a
does; it can only know this in terms of an expectancy over space with n binary dimensions, an inter-agent communica-

large number of speaking turns. tion process that progresses from implicit distributed knowl-
edge to enough common knowledge to assign an example to
Appendix 2. Removing Uncertainty the correct subclass is an expression that only supports the

operatorsh (necessary) and [ ] (optional).

With one dimension, the uncertainty is completely and im-  The sixteen binary operators of propositional logic can be
mediately removed because the agent in control of the direlated (with one rotation) to two-dimensional concepts, as
mension possesses 100% of the information. With two diindicated in Figure 9.
mensions, there are several possible cases whose distributionPiaget’s INRC group, or the Klein four-group is a group
is indicated in Figure 8. In ca$®, a single agent, hereafter of 4 elements that combines two cyclical, 2-element groups.
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TER 000 -

ey PwQ P*Q . . . .
éIFL]Q] pP=0 PAQ PoQ Figure 10 Rotations and enantiomorphisms.
QI[P v
Py Q In other words, each example requires the contribution of ei-
r Z Q ther a single agent, or of three or four agents. Another exam-
PeQ ple is:
rlo
Plo X[Y[ZWI])] = XV (XAY)V (XAYAZ)V (XAY AZAW)
Appendix 3. Counting and Characterizing Con-
Figure 9 Concepts and propositions. cepts
Before coming back to how our multi-agent system works,
Table 4 let us make a few remarks about concepts with up to three
Conceptual forms up to four dimensions. and sometimes four dimensions. Note that the fourth dimen-
D1 D2 D3 D4 sion is generally the upper limit of human working memory,
X X[Y] X[Y[Z]] X[Y[ZW]]] not because the boundary between 3 and 4 or between 4 and
X[Y[ZAW]] 5 is decisive, but because one must consider the entire set of
X[Y AZ] X[Y AZW]| relations between the elements in working memory. So it is
X[Y AZAW] not a loadE of elements that has to be considered but a load
XAY XAY[Z] XAY([ZW]| of P(E), that is, all subsets af elements, since every subset
XAY[ZAW] also constitutes an example of the concept. Three elements
XAYANZ XAY AZ|W] generate a load of 8, 4 a load of 16, 5 a load of 32, etc. This
XAYAZAW approach has now been adopted by authors desirous of recon-

ciling Piaget’s theory and information-processing theory (the
so-called neo-Piagetian trend) and who, following Pascual-
, ) Leone’s (1970) seminal work, developed various models re-
If we add a third 2-element group, we obtain an 8-element,qying around the new “magical number” four (Case, 1985;
group, called the extended INRC group (Apostel, 1963).cowan, 2001, though not neo-Piagetian; Fischer, 1980; Hal-
The extended group operates within the sixteen operators @brd, Wilson, & Phillips, 1998). We find this natural limita-
propositional logic, with the same categories as in Figurejon in many human activities, such as the four main phrases
9. One can understand this for geometrical reasons (Kleigy 5 sentence, the four singing voices, the four suits in a deck
four-group operators are simple or combined rotations in thigf cards.
case). o Every concept possesses numerous realizations in its
The relevance of the notation in terms of necessary andpace that are equivalent save one transformation (rotations
optional dimensions can easily be verified. For instance, fopng enantiomorphisms, Fig. 10) and one substitution of the
all junctions and all implications, it may suffice to have a s pclasses of positive and negative examples (e.g. the set of
single piece of information (e.g., p false fp\q; p true for  gmal| roundandred squareexamples is equivalent to the set
pVva; qtrue forp | g; g false forp < g, etc.), butitis nec-  of pig round andblue squareexamples insofar as the same
essary to have two pieces in half of the cases (this can easilyf,pclasses are opposed). For instance:
be seen by inverting the truth values in the above examples Thys, many concepts are equivalent. Table 5 gives a count
in parentheses). . o ~ of concepts up to four dimensions.

_ Starting from these three basic expressions in two dimen- Figyre 11 gives a count of the equivalent forms for three
sions, each formula is obtained by adding a new agent, contimensions. Each concept is labelled with an identification
nected by one of the two operators. This is a recursivg,ymper (in boldface), which will be used in the remainder of
concept-building process that justifies the name “graceful’ihis article.
complexification. Table 4 gives the different forms up to four  Taple 6 gives a count of the different forms in three di-

dimensions. _mensions. It does not bring out any notable regularities.
The formula of a concept condenses the set of operations
applicable to each positive and negative example of the CorAppendix 4. Multi-Agent System and Terminating
cept. Itis easy to find them and list them in disjunctive form.the |dentification Process
For instance, foX[Y A Z[W]], we get:
To describe the functioning of the multi-agent system in
XV(XAYAZ)V(XAY ANZAW) greater detail, we devised a table that explains the speaking
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Table 5
Number of different concepts up to four dimensions.

Number of positive examples .
Dimensions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1
2 1 2 1
3 1 3 3 6 3 3 1
4 1 4 6 19 27 50 56 74 56 50 27 19 6 4 1
! ? 3 4 Table 6
The 13 concepts in three dimensions.
Number of positive examples
Formula 1 2 3 4
N=8 N=12 N=12 N=4 X *
e - ~ ~ X[Y] *
C,- s Co XAY "
X[y [Z]] )
5 6 7 X[Y AZ] * *
% % % XAYANZ *
N=24 N=24 N=8 only knows it in a probabilistic manner). For each example
. — / in the table, after the simple interactidg (the real situation
c s is shown in bracketd) or C). It is normal that an agent who

leaves a simple interaction expresses itself before an agent
leaving a dual one, although his actual uncertainty reduction
will not be greater in one out of four cases. The Table 7

10 11 12 13
allows us to write the identification formulX AY[Z]*. This
formula means that the contribution of two agents is always
necessary, and that it is sufficient only for four of the eight
N=24 N=24 N=8 N=2

N=6 N=6 examples. Four times then (index &, the third agent will
C%/ have to speak. The same principles apply to Concept 11 (Ta-
5= 7 ble 8).

Let us look in detail at a final case, Concept 10 (Table 9).
The situation is very revealing about the uncertainty effects
generated by a simple interaction. In all cases, it would be
possible to identify the example with only two agents. Yet
it is impossible for the system to know this at the onset, and
all agents are in the same situation, that of leaving a simple

turns, and we present some illustrations for the parallel very, o action, with 2/3 leading to a choice and 1/3 leading to a
sion. Table 7 shows Concept 12. The rows contain the €X3ual interaction on examples 1, 3, 4, 5, 6, and 8. Allin all,

amples of the vertices of a cube, numbered as in Figure 1E,.0 6y 1/3 = 2, the formula X A Y[Z]2. Although this
which will be used here for all cases presented (the positiv@ ,q¢ i gifferent from the preceding ones, themselves differ-
examples of Concept 12 are 1, 5, and 6). ent from each other, their formulas are identical (disregarding
he index in certain cases). We will say that they are isotopes
folf the purposes of our classification.

Figure 11 Equivalent forms in three dimensions.

The first three columns give the situation the agent in tha
column leaves for the other two agents if he speaks about t
example in that row. For three dimensions, the first speaker Concept 10 is exemplary of the ambiguities that arise
leaves asquarewhich can only have four forms, as we saw when we go from a state of distributed knowledge to a state
above: identification achieved (0 speakers) denb{dtbugh  of common knowledge in a community of agents. To better
itis not used in the present tables), dual interaction (2 speakHustrate this ambiguity, let us borrow an example from Fa-
ers) denoted, simple interaction (1 or 2 speakers) denotedgin, Halpern, Moses, and Vardi (1995), who gave the exam-
S, and choice (1 speaker) denotéd The ambiguous case ple of three wives likely to be cheated on by their husbands
is the simple interaction, where the agent who talks does ndiut each one having knowledge only of the misfortune of the
knows exactly what reduction of uncertainty he brings (butothers, should the case arise. The state of the woAd-iB—
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Table 7

Communication table for the examples of Concept 12 (exd, 5, 6).
Size Color Shape Speaks Speaks Speaks
9 © (F) 1st 2nd 3rd

1 D SD] D C SVF FVS

2 D D D SVCVF SVCVF SVCVF

3 SCj SC] D SvC SvC R

4 D SC] S(C] CVF CVF R

5 SD] D D S CVF FvC

6 D D SD] F SvC Cvs

7 S[C] SC] S(C] SVCVF SVCVF R

8 S[C] D S(C] SVF FVvS R

Note. This table gives the situation after the first speaking turn. A similar table is needed for the second turn; the reader can easily guess
what it would be.

Table 8

Communication table for Concept 11 ex 1, 2, 6, 7).
Size Color Shape Speaks Speaks Speaks
S © (F) 1st 2nd 3rd

1 S[C] SD] C F S R

2 S[C] C C CVF S R

3 S[C] D C F S R

4 SD] SD] SD] SVCVF SVCVF SVCVF

5 S[C] C C CVF FvC Rk

6 S[C] C D C S R

7 SD] D D S CVF FvC

8 S[C] C D C S o

Note. This table gives the situation after the first speaking turn. A similar table is needed for the second turn; the reader can easily guess
what it would be.

C+ (i.e., A andC have unfaithful husbands). In this system, ways have an upper bound and a lower bound (Davey &
we can describe the following two levels for knowledge  Priestley, 1990). Let a and b be two elements, the upper
="“There is at least one wife whose husband is unfaithful”: bound @uUb) is the supremum of these two elements. Rea-

1. Mutual knowledge soning in the same way for the lower bound, the infemum
Vi, j,k € E = (A B,C), i knowsKn, and knows thaj knows  of aandb is (anb). More specifically in the framework of
Kn and thatj knows thatk knowsKn. formal conceptual analysis, two lattices are merged to form

2. Shared knowledge pairs and this gives a Galois lattice (Ganter & Wille, 1991).

Vi € E = (A,B,C), i knowsKn. Each agent knows that there Each multi-agent formula is seen as a pairg) such thatA
is at least one- but doesn’t know that the others know. The is the set of concepts learnable from a communication for-
present example stabilizes in this state if no information ismula (definition in extension) anl is the set of constraints
communicated. Individually, by way of her perception of theimposed upon a formula (definition in intension). In the lat-
situation, each of the three wives considers the propositiotice, each formula assigned to a location can learn all subor-
“There is at least one-" to be true. But she cannot infer dinate concepts. For simplicity’s sake, across from each for-
anything about what the others knowA could very well —mula, we give only the most complex concept learnable from
think thatB only sees oner (if A thinks she is— herself), it. The processing cost is incurred when equivalent commu-
that C sees no+'s and that she believes there are none (ifnication structures (isotopes) process different concepts (e.g.
Athinks she is— herself and assumes ti2does likewise). Concepts 8, 9, 10, 11, and 12 for the structXre Y[Z]").
We end up with a considerable distortion between the statén this case, the structure occurs several times with different
of the world @+ B— C+) and the attribution of’s beliefto  cost indexes. The criterion that orders the structures is:
C(A—B—C-).
(A1,Bl) < (A2,B2)=A1CA2=B2CB1
Appendix 5. Galois Lattices o
Thus, a complex communication protocol enables learn-

A complexity hierarchy for concepts up to three dimen-ing of more concepts than a protocol that is subordinate to
sions can be proposed based on the ordering of multi-ageiitt The more constraints one imposes on a communication
formulas in a Galois lattice (Figure 12). protocol (fewer agents, less communication), the smaller the

A lattice is an ordered set in which any two elements al-number of concepts the protocol can learn. Inversely, the
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Table 9
Communication table for Concept 10 ex 1, 2, 5, 6).
Size Color Shape Speaks Speaks Speaks
9 ©) (F) 1st 2nd 3rd
1 SC SD] SC SVCVF SVCVF (SVF)
2 SC SCj SC SVCVF SVCVF e
3 S[C SCj SD SVCVF SVCVF (SvO)
4 SD SCj S[C SVCVF SVCVF (CVF)
5 SD S(Cj SC SVCVF SVCVF (CVF)
6 S[C SCj SD SVCVF SVCVF (SvC)
7 S[C SCj S[C SVCVF SVCVF e
8 S[C SD] SC SVCVF SVCVF (SVF)

Note. This table gives the situation after the first speaking turn. A similar table is needed for the second turn; the reader can easily guess

what it would be.

fewer the constraints, the more a formula is able to learn
numerous, complex concepts (even if the available agents
or communications become useless for simpler concepts).
Starting from the top of the lattice, we find a conceftR)

such thatB does not contain the constraint present in the
concept below it (e.g., compared to the formMa Y A Z,

we impose only 4 calls of for the concepX AY([Z]*). This
process is repeated in a top-down manner until all constraints
have been used (we then obtain a unary agential prot¥gol:
The concepts are treated in the same way via a bottom-up
process: moving up the lattice, we gradually add the learn-
able concepts (this means that the formXilaY A Z permits
learning of all concepts in three dimensions). This lattice
provides a theoretical concept-complexity order. An analogy
can be drawn with the complexities described in the introduc-
tion and used in computer science theory. The total number
of agents in a formula corresponds to the maximal compres-
sion of the group of speakers. This number is like random
Chaitin-Kolmogorov complexity; it is the cardinal of the set
of all necessary independent agents. Then, during the iden-
tification of all examples of the concept, the agents will be
called a certain number of times. This reuse of agents can be
likened to Bennett's logical degth

*Remember that Chaitin-Kolmogorov complexity corresponds
to the size of the smallest program capable of describing (comput-
ing) an object. This size can be measured in terms of information
quantity. Now, Bennett’s logical depth corresponds to the computa-
tion time of this smallest program. In other words, it is proportional
to the number of times the different routines will be called. A Tower



COMPLEXITY OF CONCEPTS AND LEARNABILITY

XAYAZE (13)

(XAY)S [Z]" (12)

(X AYY [ZF (9,10, 11)

(X AYS [Z]" (8)

X [YIZFI' (5)

(XAD)® (6.7

X YIZIr 4

XYz’ 3

X [YE (2)

X ()

Figure 12 Galois lattice of concepts in the parallel version.
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