
Current Psychology of Cognition/Cahiers de Psychologie Cognitive 2004, 22 (1), 41-82. Preprint

A Theory of the Graceful Complexification of Concepts and Their Learnability

Fabien Mathy∗ and Jöel Bradmetz
Universit́e de Reims ChampagneArdenne, France

Conceptual complexity is assessed by a multi-agent system which is tested experimentally.
In this model, where each agent represents a working memory unit, concept learning is an
inter-agent communication process that promotes the elaboration of common knowledge from
distributed knowledge. Our hypothesis is that a concept’s level of difficulty is determined by
that of the multi-agent communication protocol. Three versions of the model, which differ
according to how they compute entropy, are tested and compared to Feldman’s model (Nature,
2000), where logical complexity (i.e., the maximal Boolean compression of the disjunctive
normal form) is the best possible measure of conceptual complexity. All three models proved
superior to Feldman’s: the serial version is ahead by 5.5 points of variance in explaining adult
inter-concept performance.

Computational complexity theories (Johnson, 1990; Las-
saigne & Rougemont, 1996) provide a measure of complex-
ity in terms of the computation load associated with a pro-
gram’s execution time. In this approach, called the structural
approach, problems are grouped into classes on the basis of
the machine time and space required by the algorithms used
to solve them. A program is a function or a combination
of functions. In view of developing psychological models,
it can be likened to a concept, especially wheny’s domain
[y = f (x)] is confined to the values 0 and 1. A neighboring
perspective (Delahaye, 1994) aimed at describing the com-
plexity of objects (and not at solving problems) is useful
for distinguishing between the“orderless, irregular, random,
chaotic, random” complexity (this quantity is called algorith-
mic complexity, algorithmic randomness, algorithmic infor-
mation content or Chaitin-Kolmogorov complexity; Chaitin,
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Champagne-Ardenne, UFR Lettres et Sciences Humaines, 57
rue Pierre Taittinger, 51096 Reims Cedex, France (e-mail: fa-
bien.mathy@free.fr.

1987; Kolmogorov, 1965) and the “organized, highly struc-
tured, information-rich” organized complexity (or Bennett’s
logical depth, 1986). Algorithmic complexity corresponds
to the shortest program describing the object, whereas the
logical depth of that program corresponds to its computa-
tion time. Working in this framework, Mathy and Brad-
metz (1999) were able to account for learning and catego-
rization in terms of computational complexity and logical
depth. They devised a concept-complexity metric using a
multi-agent system in which each agent represents one unit
in working memory. In this model, a concept’s dimensions
are controlled by informationally encapsulated agents. Cat-
egorizing amounts to elaborating mutual knowledge in the
multi-agent system. This model of complexity is grounded
in an analysis of the complexity of the communicative pro-
cess that agents must carry out to reach a state of mutual
knowledge. Less concerned with psychological modelling,
Feldman (2000) proposed a theory he presents as inaugural
(“... the relation between Boolean complexity and human
learning has never been comprehensively tested”, p. 631),
arguing that the complexity of a concept is best described
by the compression of its disjunctive normal form (i.e., a dis-
junction of conjunctions of features). Feldman supported this
idea with an experiment (after learning, recognize computer
images of artificial amoebae of a given species that differ
in size, shape, color, and number of nuclei), but no alterna-
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tive models were tested. Given the interest this model has
aroused and its tempting simplicity, an experimental com-
parison with our model seemed indispensable.

Our model of working memory communications can be
readily related to the working memory functions described
in earlier research. When conceptual complexity is assessed
using a multi-agent model, working memory can be jointly
described by the number of units required and by the com-
munication operations they must carry out. Working mem-
ory communications correspond to the operations controlled
by the executive function; the number of units simply corre-
sponds to the storage capacity. The processor, or executive
function, has been described as a residual domain of igno-
rance (Baddeley, 1986, p. 225), although it has been widely
studied in psychometrics for its assumed relationships with
factorg (Crinella & Yu, 2000). The task-switching paradigm,
for example, has been used to directly study executive con-
trol (Gilbert & Shallice, 2002). For instance, in Anderson’s
(1983) adaptive character of thought theory (ACT), the com-
putational aspects of rule processing are opposed to declara-
tive elements like facts and goals; see also Anderson’s (1993)
revised theory, ACT-R, and Newell’s (1992) rule-production
model, SOAR. However, in both models, no capacity limit is
set for working memory. In Baddeley’s (1976; 1986; 1990,
1992) well-known model, we find functional independence
between the processor (limited capacity) and memory span
(also limited), but most research based on this model has
been confined to measuring memory span. Similarly, in his
neo-Piagetian studies, Pascual-Leone (1970) reduced the ex-
ecutive component of working memory to the capacity for
maintaining at least one unit in working memory. We shall
see that the multi-agent models developed here incorporate
both the executive component and the storage component.

The purpose of the present article is to provide an in-
depth presentation of a theory of graceful complexification of
concepts (i.e., continuous and non-saltatory/ non-stepwise;
see McClelland, Rumelhart, & PDP Research Group, 1986)
briefly addressed in Mathy & Bradmetz (1999), and to com-
pare it to Feldman’s (2000) theory. Like Feldman, we repre-
sent concepts as having a component-like structure obtained
by concatenating a series of features (binary for the sake of
simplicity; n-ary would simply lead to a combinatory burst).
We also analyze Feldman’s model and point out five of its
shortcomings. Then we test and compare the two models
experimentally.

Setting aside philosophical problems attached to a view of
concepts that rests primarily on the composition of their un-
derlying dimensions and the possibility of expressing them
in a Boolean fashion (for a thorough discussion of this point,
see Fodor, 1994), we retain the possibility of (i) using a set
of examples defined by the number of dimensions (e.g., in
three binary dimensions, shape (round or square), color (blue
or red) and size (big or small), the space of examples con-
tains 23 or 8 elements), (ii) using a Boolean expression to
define subclasses of positive and negative examples that re-
spectively do or do not represent the concept, and (iii) as-
signing each concept a function that separates the positive
and negative examples (Figure 1). This view was initiated by

Figure 1. Illustration of a three-dimensional concept.

Bourne (1970); Bruner, Goodnow and Austin (1956); Levine
(1966); Shepard, Hovland and Jenkins (1961).

The positive cases are shown as a black dot. Suppose
the examples are geometrical objects. The upper and lower
faces aresmall andbig objects, the left and right faces are
round andsquareobjects, and the front and back faces are
red andblueobjects. Using classical formalism of proposi-
tional logic, we say that X is a positive example if:

X ≡ 111∨110∨010∨000≡ (11∗)∨ (0∗0)

In other words,X is a positive example ifX is (Round∧
Small)∨ (Square∧ Red) (i.e., in natural language : (Round
and Small) or (Square and Red)).

The information content of a sample of examples is then
reduced to a set of pertinent information, in order to get an
economic way of describing a concept. Learning in this case
can be assimilated to a compression of information. The de-
gree of this compression defines the compressibility of the
concept. For example, the learner can reduce a concept to a
rule. The multi-agent model proposed here has been devel-
oped to model the compression of a concept. We assume
that each dimension of a concept is identified by a single
agent. When communicating agents exchange minimal in-
formation to learn a concept, we measure the compression of
the minimal communication protocol they used. This min-
imal communication protocol can correspond to the formal-
ism of propositional logic with its use of disjunctive and con-
junctive operators. The objective of the multi-agent model
is to describe several ways to obtain a compressed propo-
sitional logic formula. Because the multi-agent system is an
instantiation of a working memory model, these several ways
to induce a concept will be developed according to different
considerations of working memory. The model is presented
in detail in appendices 1 until 4.

Parallel, Serial, and Random Versions of the Multi-
Agent Model

Parallel version.The appendix 4 gives a detailed presen-
tation of how multi-agent processing works. The cube-vertex
numbering system used throughout this article is given in
Figure 1B. In this presentation, it is assumed that entropy,
i.e., the amount of information supplied (see Tables 7, 8,
and 9), is calculated for each example presentation. This
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Table 1
Cost of each example in Figure 1, for the random version.

Examples
Order 1 2 3 4 5 6 7 8 Total
FSC 2 2 2 3 2 3 3 3 20
FCS 3 3 3 2 3 2 2 2 20
SFC 2 2 2 3 2 3 3 3 20
SCF 3 2 2 3 3 2 2 3 20
CFS 3 3 3 2 3 2 2 2 20
CSF 3 2 2 3 3 2 2 3 20
Total 16 14 14 16 16 14 14 16 120

is a strong hypothesis that induces a parallel version of the
model.

Serial version.One can also assume that entropy is cal-
culated once and for all for a given concept, and that each
example presented will be analyzed using the same commu-
nication protocol. In this condition, the order of the agents
is identical for all examples of the concept. This is the way
a traditional system of rules operates because communicat-
ing occurs in a serial manner and in a fixed order. To make
the model’s identification process clearer, each formula can
be represented by a decision tree that gives the order of the
speakers. Figure 2 presents these trees, which are read as
follows: the root of the tree represents the choice to be made
by the first speaker, AgentX, the branches down the next
node areY’s, and the branches down the lowest node areZ’s.
A look at the simplest and most typical cases (1, 2, 6, 13)
will make the others easier to understand.

Random version.In the third version of the model, called
random, it is simply assumed that for each example pre-
sented, the agents express themselves in a random order1.
Each concept can be assigned a number which is the mean
number of agents that have to express themselves in order to
identify the eight examples. As in the other versions, positive
and negative examples are treated equally. In illustration, let
us again consider the case in Figure 1 with the vertex num-
bers shown in Figure 1B. For each vertex, there are six possi-
ble speaking orders among the agents Form, Size and Color:

FSC,FCS,SFC,SCF,CFS,CSF.

For each of the eight vertices and the six orders, the iden-
tification process has a cost (cf., Table 1). The mean cost
of identifying the eight examples of a given concept (i.e., the
number of agents who will have to speak) is 120/8= 15, and
the variance is 1. Figure 2 gives the costs of all concepts.

Communication Protocols

If we identify agents by their speaking turnsX, Y, Z,
and we retain the operators∧ (necessary) and [ ] (optional),
every concept can be associated with a formula that corre-
sponds to a communication protocol and expresses the total
information-processing cost for its eight examples. Concepts
6, 9, and 12 in the parallel version of the model will be used
here to illustrate how these formulas are determined. Each

positive and negative example of Concept 6 possesses a ho-
molog on one side, so two agents will always suffice to iden-
tify it. We therefore writeX8∧Y8 or simply X ∧Y, where
the absence of an exponent is equal to an exponent of “8”
by default. This formula means that for the eight cases of
the concept, two agents will be necessary and sufficient each
time. For Concept 9, we can see that all negative examples
have a homolog on one side so they can be identified by two
agents, but the positive examples are isolated so they will
need three agents. This is writtenX ∧Y[Z]2, meaning that
two agents will always be necessary, and in two cases they
will not be sufficient and a third agent will have to contribute.
Looking at Concept 12, we find that four cases (all negative)
are located on a side with a homolog so two agents will be
necessary and sufficient, but the other four are isolated and
therefore require three agents. This is denotedX ∧Y[Z]4.
The formulas for the serial and parallel versions are given in
Figure 2.

Feldman’s Model (2000)

Feldman examines positive examples only, which he
enumerates in disjunctive normal form (DNF) (see also
Feldman, 2003, for a complete classification of Boolean
concepts from one to four dimensions). Illustrating
with the concept in Figure 1 again, if we distinguish
f (round), f ′(square), s(big), s′(small), c(red), and
c′(blue), the positive examples are written

1 = f s′c′, 2 = f s′c, 6 = f ′s′c, 8 = f ′sc

and the concept is written

( f ∧s′∧c′)∨ ( f ∧s′∧c)∨ ( f ′∧s′∧c)∨ ( f ′∧s∧c)

Using a heuristic that is not described in depth, Feldman
states that the maximal compression of this DNF would be
c∧(s∧ f )′∨(c′∧s′∧ f ). Here, the notation system of propo-
sitional logic, based on Morgan’s law, is used to go from one
connective to the other by means of negation (denoted by
an apostrophe):(s∧ f )′ ≡ (s′ ∨ f ′). Then the author counts
the number of letters in the compressed formula and draws
from it the complexity index for that concept. Apart from its
predictive value, this model calls for five remarks.

1. It moves immediately from the DNF of a concept to
its complexity, without trying to support the psychological
plausibility of this transition, that is, without attempting to
come closer to a plausible way of functioning for working
memory, even a relatively global and abstract one.

2. For the model to be granted the universality it claims to
have, certain choices made in elaborating the formulas need
to be developed and supported. Why was the DNF chosen?
What makes the connectives∧ and∨ superior to others for
modelling categorization? What compression heuristics are
used? Why is an arbitrary, fixed order employed for enumer-
ating the binary features of the concept?

1 This principle is similar in some ways to the one defended
by Pascual-Leone (1970), who uses the Bose-Einstein occupancy
model of combinatorial analysis to describe the activation of
working-memory units.



4 FABIEN MATHY ∗ AND JOËL BRADMETZ

3. There is an error in the model, related both to the opac-
ity of the compression technique and to the arbitrary or-
der adopted for concept features. A simple method called
Karnaugh-Veitch diagrams, which can be easily applied by
hand (Harris & Stocker, 1998; V́elu, 1999), indicates that
Concept 7 (precisely the one used as an example) has a maxi-
mal compression of 4, not 6 as the author states, since the for-
mula( f ∧s′∧c′)∨ ( f ∧s′∧c)∨ ( f ′∧s′∧c)∨ ( f ′∧s∧c) can
be reduced to(s′ ∧ f )∨ (c∧ f ′), which describes thesmall
roundexamples and thered squareexamples.

4. The author briefly mentions prototype theories in his
conclusion, without indicating how his construction could be
a model of them.

5. It is not clear why positive and negative examples are
not treated equally and why they even constitute a complex-
ity factor independently of Boolean complexity. This point
is simply linked to the method used by the author and is not
an intrinsic characteristic of concepts. In our method, as we
shall see, symmetrical processing of positive and negative
cases eliminates this source of variation.

The concept-complexity indexes derived from Feldman’s
model (corrected for Concept 7) are given in Figure 2. To
facilitate comparison with the other indexes, we multiplied
them by 8.

Concept Learnability

A concept is a discriminant function in a space of exam-
ples. The simplest discrimination is linear separability, the
kind a perceptron can achieve without a hidden layer. Lin-
ear separability supplies a measure of complexity, but it is
insufficient because it performs an undifferentiated classifi-
cation that puts a whole range of cases with interactions of
variable complexity under a single label,inseparable. The
multi-agent model conveniently offers the possibility of as-
signing each concept a particular Boolean function, which,
provided one is able to order those functions – we shall see
later how a lattice can so just that – considerably enriches
the separable versus non-separable model. In this case, ev-
ery function used has a corresponding Vapnik-Chervonenkis
dimension (VC) (see Boucheron, 1992) and exhibits better
case discrimination2.

Between learning and knowledge activation there is iden-
tity of form. When a learning master supplies answers, the
subject learns to identify the stimulus and to associate it with
a subclass (positive or negative); in other words, novices do
the same thing as when they know the concept and activate
their own knowledge. One can thus assume logically that
the time taken to identify an example and assign it to the
correct subclass once the concept is learned is proportional
to the concept’s complexity, and also that the learning time,
i.e., the time taken to memorize the subclass to which each
example belongs, is proportional to the concept’s complexity
as well.

A hierarchy of concept complexity up to three dimensions
can be proposed, based on the ordering of multi-agent for-
mulas in a Galois lattice (Appendix 3, Figure 12). However,
it is more practical to assign an overall complexity index to

a concept by taking the sum of all calls to all agents that
occur while the concept’s eight examples are being identi-
fied. These indexes, which indicate the logical depth of the
concept, are given in Figure 2 for the various versions of the
model.

Now let us present the method that enables us to com-
pare the four measures of conceptual complexity: multi-
agent serial, parallel, and random complexity, and Feldman’s
Boolean complexity.

METHOD

Subjects

Seventy-three undergraduate and graduate students (29
men and 44 women) between the ages of 18 and 29 (mean
age: 21 years 7 months) participated in the experiment.

Procedure

A computer-assisted learning program was written (avail-
able at http://fabien.mathy.free.fr/). A standard concept-
learning protocol was used: examples were presented in suc-
cession to the subject, who had to sort them by putting the
positive examples in a “briefcase” and the negative exam-
ples in a “trash can”. Feedback was given each time. The
examples were generated from three dimensions: (i) shape
(square, oval, or cross), (ii) color (red, blue, purple, or green),
and (iii) the type of frame around the colored shape (diamond
or circle). Many shapes and colors were used so that on
each new concept, the examples would look different enough
to avoid interference and confusion with the preceding con-
cepts. For each concept, the dimensions were of course used
only in a binary way in the entire set of examples (e.g., square
vs. oval or square vs. cross).

A set of examples was composed of a subset of positive
examples (ex+); its complementary subset was composed of
negative examples (ex−). This partition defined the target
concept. When the image displayed on the computer de-
picted anex+, the learner had to click on the briefcase drawn
in a window designed for that purpose; anex− had to be
put in the trash can shown in another window. Clicking the
mouse in either of these windows caused the other window
to disappear so that the feedback would be clearly associ-
ated with the clicked window. Each correct answer was re-
warded with a “Bravo” heard and displayed in the feedback
window. When an incorrect answer was given, a message
was displayed saying “Not in the briefcase” or “Not in the
trash can”, depending on the case. All feedback messages re-
mained on the screen for two seconds. A “Too late” message
was displayed after eight seconds if the subject still had not

2 Staying within the domain of linear separability as it is com-
puted by a perceptron without a hidden layer, theVC dimension,
for 3 dimensions, is equal to 4, that is, the perceptron can separate
all subsets of 4 vertices obtained by bi-partitioning the vertices of
a cube, provided the 4 vertices indeed define 3 dimensions and not
just the 4 corners of a square. For cube example sets with more than
4 members, linear separability still may be possible, depending on
the case, but it is not necessarily so.
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Figure 2. Formulas and decision trees for concepts up to three dimensions.Note. P: communication protocol formula for the parallel
model. S: communication protocol formula for the serial model.PC, SC, RC, FC: complexity index for the parallel, serial, random, and
Feldman (2000) models, respectively. (X’s choices are shown as a solid line,Y’s as a black dotted line, andZ’s as a grey dotted line).
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Figure 3. Possible ways of representing Boolean dimensions as
physical dimensions.Note. Representationa: numerical facilita-
tion. Representationb: spatial and numerical facilitation. Repre-
sentationc: separable dimensions are amalgamated.

clicked on the briefcase or trash can, and the next example
was displayed; this message kept the game going and avoided
unnecessary use of time. The time limit of eight seconds was
assessed by means of various surveys which yielded a late
response rate of less than 1%. Eight seconds is obviously not
an absolute response time but simply served here as a means
of putting all subjects in the same situation. The concept-
learning criterion was deemed to be reached when the sub-
ject correctly sorted 16 consecutive examples. Every time
a correct answer was given, one of 16 small squares in the
progress bar was filled in (in black). Subjects could there-
fore see their progress at any time. Three black squares were
erased if the subject responded too late. A mistake erased all
previously filled-in squares and reset the learning counter at
zero.

All three dimensions were represented in a single figure
(e.g., an example could be ared squarewith a diamond
around it) in order to avoid spatial representations (in case of
an example represented by three present or absent forms in a
row). Spatial representations would have facilitated learning
(see examples in Figure 3). The dimensions were also repre-
sentative of separable dimensions permitting independent di-
mension processing (as opposed to integral dimensions; see
Garner, 1974).

The dependent variables were (i) the time taken to learn
the concept (T), (ii) the total number of responses (i.e., the
number of examples used) (R), and (iii) the number of errors
made (E).

RESULTS

Table 2 shows that the correlations between the three de-
pendent variables were greater than.95, p < .01. This find-

Figure 4. Boxplots of learning times for the 13 concepts.

ing allowed us to look solely at the total learning time, which
was the most highly correlated with the complexity indexes
for the four models.To avoid any effects brought about by
the extreme scores (which can easily be seen in Figure 4), the
learning times for each subject were transformed into ranks
(TR) by attributing ranks 1 to 13 to the concepts (rank 13 was
given to the concept learned the fastest so the coefficients in
the regression analyses would remain positive).

Now, to compare the four models and identify the sources
of variation in performance, we chose a linear regression
analysis. Two explanatory variables (independent by con-
struction) were selected: the presentation rank (PR) of a
concept (drawn at random during the experiment) and the
complexity index of each model (SC, PC, RC, andFC, for
the complexity indexes of the serial, parallel, random, and
Feldman models, respectively). The presentation rank (PR)
was included because learning time decreased as the rank for
learning a concept increased (F(12,72) = 9.7, p < .001), as
indicated in Figure 5. The dependent variable was the total
learning time rank (TR) of the concept among the 13 that
each subject learned. The regression analysis was applied to
the four complexity indexes. The results are presented in Fig-
ure 6. The amounts of variance explained (R2) by comput-
ing a multiple regression on the concept-presentation ranks
(PR) and on each complexity index were .423, .418, .400,
and .363 for indexesSC, PC, RC, andFC, respectively. All
of the analyses of variance on the multiple correlations were
significant (F(2,946) = 347, 340, 315, and 270, respectively,
p < .001). The results of thet-tests applied to paired corre-
lations (i.e., to the regression line coefficients) between each
of the complexity indexes and the learning time ranks (TR)
are given in Table 3. The models were ordered as follows:
S> P > R > F . Thus, all three multi-agent models turned
out to be superior to Feldman’s model (2000). The serial,
parallel and random models (which were statistically indis-
tinguishable) are significantly better than Feldman’s model.
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Table 2
Correlations between the complexity indexes and the scores.

SC PC RC FC TR T R
PC .958∗∗

RC .841∗∗ .940∗∗

FC .925∗∗ .957∗∗ .843∗∗

TR .576∗∗ .574∗∗ .559∗∗ .533∗∗

T .363∗∗ .380∗∗ .374∗∗ .364∗∗ .646∗∗

R .351∗∗ .367∗∗ .359∗∗ .353∗∗ .637∗∗ .978∗∗

E .335∗∗ .358∗∗ .357∗∗ .339∗∗ .612∗∗ .953∗∗ .965∗∗

Note. TR: total learning time rank.T: total time.R: number of responses.E: number of errors.SC: serial complexity.PC: parallel
complexity.RC: random complexity.FC: Feldman’s complexity (2000).∗∗: correlation is significant at the 0.01 level (two-tailed).

Table 3
Values of Student’s t between correlations.

rTR.PC rTR.RC rTR.FC

rTR.SC 0.26 1.15 4.16∗∗

rTR.PC 1.63 5.26∗∗

rTR.RC 1.73
Note.∗: significant at p< .05. ∗∗: significant at p< .01. TR:
learning-time rank.SC: serial complexity.PC: parallel complexity.
RC: random complexity.FC: Feldman’s complexity (2000). These
t-values on non-independent samples were calculated using
Steiger’s (1980) formula (see Howell, 1997, p. 300).

The superiority of the serial model points out the merits of
modelling information processing in working memory using
models that process information in a fixed order.

Regressions on the mean learning times were also cal-
culated. Let us compare the two models that differed the
most as to their prediction of learning time (Feldman’s
model and the serial model). The amount of variance ex-
plained by Feldman’s model in this condition was greater
(R2 = .815, F(1,11) = 49, p < .001) than the serial model
(R2 = .808, F(1,11) = 46, p < .001), although the differ-
ence between the regression line coefficients was nonsignif-
icant (t(11) = −0.8, NS). In illustration, Figure 7 shows
the regression line between the mean learning times and the
serial complexity indexes of the concepts. This finding in-
dicates that, despite the greater readability of the results, re-
gression calculations on mean learning times (the basis of
Feldman’s calculations, 2000) do not point out which models
best fit the data3.

DISCUSSION

One of the goals of this study was to evaluate Feldman’s
(2000) model of conceptual complexity with respect to a se-
ries of multi-agent models developed to be analogous to the
functioning of working memory. The results showed that all
three multi-agent models tested are superior to Feldman’s
(2000) for the regression of learning-time over the set of
three-dimensional concepts. The difference between Feld-
man’s model and the multi-agent models lies not only in
the fact that the latter take the complexity of a concept into

Figure 5. Mean learning time in seconds, by presentation rank of
the 13 concepts.

account in terms of positive and negative examples (unlike
Feldman’s model which looks solely at positive examples),
but also in their clarification of dimension processing.

The inherent advantage of multi-agent models is that they
allow one to address the question of the nature of information
processing (serial, parallel, or random). Our results showed
that the serial model is the best model because it imposes a
fixed information-processing order. One reason why it pre-
vails over the other three is certainly due to relatively con-
stant patterns within noun phrases in natural languages (e.g.,
big red roundinstead ofround red big). The phrase’s sta-
bility seems to be rooted in stylistic considerations, which
impose a certain order when features are being enumerated.
This would fix their order during stimulus rehearsal. Besides,
in the three multi-agent models developed here, the com-

3 Pascual-Leone (1970) obtained excellent fits between theoret-
ical and experimental curves using this same technique. By taking
interindividual variability into account, Bradmetz and Floccia (sub-
mitted) showed with a LISREL model that a large part of the vari-
ance is not explained by Pascual-Leone’s model and that the data fit
should therefore be rejected.
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Figure 6. Linear regression for the four complexity models.Note. PR: presentation rank.TR: learning-time rank.SC: serial complexity.
PC: parallel complexity.RC: random complexity.FC: Feldman’s complexity (2000).

Figure 7. Relationship between mean learning time and serial
concept-complexity indexes.

munications corresponding to the executive part of working
memory processing is represented by decision trees. Because

it imposes an unchangeable order for nodes at different tree
depths, the serial multi-agent system can be reduced to a
production system like that found in the symbolic approach
to reasoning (Newell, 1983, 1990, 1992; Newell & Simon,
1972; Anderson, 1983; Holland, Holyoak, Nisbett, & Tha-
gard, 1986). In the latter approach, reasoning is based on
rules whose complexity depends on the nested hierarchiza-
tion of a set of variables (an idea also found in developmen-
tal psychology in Zelazo, Frye, & Rapus, 1996). Our paral-
lel and random multi-agent models, however, go beyond the
traditional representation in decision-tree format, which im-
poses a predefined order on the dimension hierarchy. As for
the random model, it has even fewer order constraints than
the parallel model: it does not need to compute entropy since
agents randomly put in their information until the examples
are identified. In this case, the amount of information needed
only depends a posteriori on a concept’s entropy (since the
savings in terms of fewer speaking turns still depends on the
concept’s structure) and not on an a priori calculation of the
concept’s entropy. Feldman’s model makes a clear distinc-
tion between the number of pieces of information (connected
by conjunctions) needed to classify examples in disjunctive
format (1, 2, or 3 pieces). However, in addition to informa-
tion quantity, multi-agent models distinguish several operat-
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ing modes by introducing the idea of information ordering.
To draw an analogy, multi-agent models would not only ac-
count for the number of digits (or chunks) to memorize in
a telephone number, but also problems of order and simul-
taneity in chunk addressing or retrieval. This kind of infor-
mation is critical because (depending on the chosen param-
eters) it may lower the amount of information that has to be
supplied to classify an example. The amount of information
required per example is therefore not an absolute measure
derived from disjunctive normal forms, but a relative mea-
sure that depends upon the type of processing carried out on
the information.

Another point concerns the originality of representing
working memory processing in terms of communication pro-
tocol formulas. The expressive power of communication for-
mulas for describing Boolean functions is no greater than
any other type of formalization, but their compressibility is
greater. By reducing the decision-tree structure to binary
communication operators, formulas offer a compressed rep-
resentation of working memory operations. The agents who
give the greatest amount of information are chosen first. One
advantage of this approach is that it brings out the corre-
spondence between the entropy measure and a classification
of simple communication situations (choice, simple inter-
actions, complete interactions). A communication formula
represents the necessary dimensions only once in its writ-
ten form. This formal simplicity stems from the fact that
each communication protocol corresponds to a speaking turn
calculated by a measure of information gain (based on an
entropy calculation). A formalization like this (in terms of
communication formulas) is simpler to read than the disjunc-
tive normal forms proposed by Feldman. For instance, our
multi-agent system models Concept 13 asX∧Y∧Z, whereas
Feldman’s formula isx(y′z∨yz′)∨x′(y′z′∨yz). We also find
a correspondence between the numbern of ∧ operators and
the interaction structures of ordern that exist in situations
with n+1 dimensions (e.g. the formulaX∧Y∧Z describing
a second-order interaction).

This study still has some limitations when it comes to
evaluating the parallel, serial, and random models. It is diffi-
cult to validate one of the three models with the inter-concept
comparison method developed here. Mathy (2002) proposed
conducting a study grounded on an intra-concept compari-
son method that would be better able to distinguish the mod-
els. Indeed, the way multi-agent models function is such that
there is a different number of agents for each example of
a concept. By reading the communication protocol formu-
las (or tables for the random model), it suffices to establish,
for each example of a concept, the number of agents needed
to classify it. An example that requires more agents in or-
der to be categorized (i.e., one representing a longer path in
the decision tree) will correspond to higher response times
in an application phase of an already-learned concept. One
would no longer measure the tree-construction time but the
time needed to navigate in an induced tree.

RÉSUMÉ

Cet article propose un modèle et unéevaluation exṕerimentale
de la complexit́e des concepts au moyen d’un système multi-agent
dans lequel chaque agent représente une unité en ḿemoire de tra-
vail. Ce mod̀ele conçoit l’apprentissage de concepts comme une
activité de communication inter-agents permettant de passer d’une
connaissance distribuée expliciteà une connaissance commune.
L’hypothèse est que le degré de difficult́e d’une t̂ache de concep-
tualisation est d́etermińe par celui du protocole de communication
inter-agents. Trois versions du modèle, différant selon le mode de
calcul de l’entropie du système, sont testées et sont comparées au
mod̀ele que Feldman (Nature, 2000) présente comme définitif, en
réduisant la complexité d’un concept̀a la compression maximale
de sa forme disjonctive normale booléenne. Les trois versions du
mod̀ele se ŕevèlent suṕerieures au mod̀ele de Feldman : la version
séquentielle gagne 5,5 points de variance dans l’explication des per-
formances inter-concepts de sujets adultes.
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munications en ḿemoire de travail. Unpublished doctoral
dissertation, Université de Reims, France.
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APPENDICES

Appendix 1. Multi-Agent Models

Multi-agent models are collective problem-solving meth-
ods. Although this idea is relatively old in psychology (Min-
sky, 1985; Selfridge, 1959), it was not until recently that sim-
ulations of agent societies and their evolution in computer
science were developed (Brazier, Dunin-Keplicz, Jennings,
& Treur, 1995; Burmeister & Sundermeyer, 1990; Crabtree
& Jennings, 1996; Epstein & Axtell, 1996; Ferber, 1999;
Gilbert & Conte, 1995). Despite a number of attempts to
devise general models (Ferber & Gutknecht, 1998; Kendall,
Malkoum, & Jiang, 1995; M̈uller, 1996), there has been no
architectural standardization. Multi-agent systems draw their
inspiration from Minsky (1985), who developed the idea of
a society of mind, according to which a mind can be con-
structed from numerous small parts each of which is mind-
less. According to this principle, in a multi-agent system,
competence is not centralized but distributed among differ-
ent agents who communicate with each other. The key no-
tions are usually collaboration, competition, communication,
and self-organization. These models have been applied, for
instance, to modelling economic and social problems (Axel-
rod, 1997), and articles devoted to them are abundant today
in journals of computer science theory.

In the model proposed here, we assume that each dimen-
sion of a concept is identified by a single agent, and that
information must be exchanged until the example presented
can be identified as a positive or negative example.

The general problem is one of going from distributed
knowledge to common knowledge (Fagin, Halpern, Moses,

& Vardi, 1995). Based on the choice of a few basic properties
related to how working memory functions, we shall present
three versions of the model: parallel, serial, and random.

Let us start from the following assumptions:
1. Each agent has information about a binary dimension

(so there are as many agents as there are dimensions) and
knows the composition of the positive and negative subsets
of examples. If, for instance, asmall red circle is pre-
sented, the size agent knowssmall (not big), the color agent
knowsred (not blue), and the shape agent knowscircle (not
square). But each agent is unaware of what the others know,
which means that full knowledge of the concept is distributed
among them.

2. Agents take turns making the information they have
public. The process ends when the publicly shared infor-
mation suffices for someone who knows the composition of
the positive and negative subsets (i.e., the concept) – and this
is the case for all agents – to assign the concerned exemplar
to the right subclass.

3. As common knowledge is being built, speaking turns
are assigned on the basis of an entropy calculation, which
enables agents to compare the amounts of information they
are capable of contributing (see Quinlan, 1986, for a method
of calculating entropy suited to the construction of trees that
minimize the information flow). If a fixed rank for commu-
nicating information is set for each agent, identifying the ex-
ample would amount to finding the path in a decision tree
called an OBDD or ordered binary decision diagram if the
dimensions are Boolean (see Bryant, 1986; Ruth & Ryan,
2000). This option will be chosen below when we develop
the serial multi-agent model. The originality of the parallel
multi-agent model (which will be described to the greatest
extent in this study) lies in the fact that speaking turns taken
by agents to release their partial knowledge are not controlled
a priori but are calculated at each occurrence. When an agent
releases a piece of information, it knows how much its con-
tribution reduces the uncertainty, since it knows the target
subclasses of positive and negative examples of the concept
and it also knows what subset (and the positive and negative
examples it contains) it is leaving for the agents that follow it.
Take a three-dimensional space whose dimensions are shape
(hereafter labeled F for form, C for color and S for size).
If the subclass of positive examples includes allsmall round
examples,small redexamples, andred squareexamples (see
Figure 1), and asmall round blueexample is presented, the
shape agent, by stating “round” cuts the uncertainty in half
(two pieces of information suffice to identify the example and
it gave one; the other will be size). But the color agent will
only reduce the uncertainty by a third since the other two will
have to express themselves after he does. In this example,
the shape agent or the size agent can thus declare a greater
reduction in uncertainty than the third agent can, and one of
them (say, drawn at random) will speak first. Turn-taking is
thus determined by the information furnished and not by the
type of dimension evoked. Thus, for a given concept, differ-
ent examples can give rise to different speaking turns. If, for
the concept described above, thesmall red squareexample
is presented, the shape agent will still speak first, but this
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time, it is the color agent and not the size agent who speaks
in second place. The identification of examples in the case of
pre-determined speaking turns would be written as follows:

F ∧ (S∨C)

Now writing this in terms of speaking turns with maximal
informativeness, we get

X∧Y

whereX, Y, etc. are the agents (of any kind) who speak
first, second, etc. In other words, no matter what example
is presented, two pieces of information will suffice to assign
it to the correct subclass. The speaking order of the agents
thus depends upon the amount of information contributed:
the most informative speaks first (or, in case of a tie, one of
the most informative), and so on. To make this process more
concrete, imagine a card game where, before a round, each
agent states how much he will reduce the uncertainty by mak-
ing a bid or laying down a card. We call this model parallel,
not because the agents talk at the same time but because they
simultaneously and independently calculate how much they
can each reduce the entropy.

4. During knowledge building, silences are not interpreted
in example assignment. Suppose the positive subclass isbig
squarefigures,big bluefigures, andblue squarefigures. The
example presented is abig red roundfigure. By announcing
“big”, the size agent makes it impossible for the other two
agents to individually give a decisive piece of information.
If they mutually interpret their silence (as in the “Game of
Hats”; see Nozaki & Anno, 1991), they would arrive at the
conclusion that it is ared roundfigure. Another important
feature of the model is the mandatory dissociation between
the information an agent thinks it will contribute and the in-
formation it actually does contribute. Sometimes the two co-
incide and sometimes uncertainty remains (as in the above
example). Before systematically developing this point, let us
take another example from the concept in Figure 1. If asmall
red roundexample is presented, the shape agent knows that
one speaking turn will suffice after his own. If, for that exam-
ple, the color agent had spoken first, then it would be uncer-
tain about its real contribution: when it seesred, it can say to
itself (remember that each agent knows the target subclasses)
that if the example issmallor square, a single speaking turn
will suffice, but if it isbig andround, then two speaking turns
will be necessary. It cannot in fact know exactly how many
agents will have to speak about a particular example after it
does; it can only know this in terms of an expectancy over a
large number of speaking turns.

Appendix 2. Removing Uncertainty

With one dimension, the uncertainty is completely and im-
mediately removed because the agent in control of the di-
mension possesses 100% of the information. With two di-
mensions, there are several possible cases whose distribution
is indicated in Figure 8. In caseC, a single agent, hereafter

Figure 8. Uncertainty cases with 2D concepts.Note. Identifica-
tion achieved (no speakers necessary).C: Choice (one speaker suf-
fices).SandS′: simple interaction (one or two speakers necessary,
depending on the case).D: dual interaction (two speakers always
necessary).

denotedX, suffices to remove the indetermination. (Remem-
ber that labels are assigned to speaking turns, not particu-
lar agents:X is not the color agent or the shape agent but
the agent who speaks first, because it is the one (or among
the ones) who provides the most information.) In caseD,
whether a positive or negative example is at stake, two agents
must speak up:X andY. In caseS, identifying one of the
three positive examples requires only one agent because the
three examples are in a disjunctive relation (e.g.squareor
red). On the other hand, identifying the negative example
requires the participation of two agents (as in the aboveblue
round example). In caseS, we therefore sometimes haveX
(3/4) and sometimesX ∧Y (1/4). This is a particular dis-
junction since it isX∨Y with X always present. Using the
notation of propositional logic, this case is writtenX [ Y ]
(affirmative connective ofX, for all Y) whose truth table is:

X X[Y] Y
1 1 1
1 1 0
0 0 1
0 0 0

CaseS′ has exactly the same structure as caseS, except
for the fact that the proportions of positive and negative ex-
amples are reversed. CaseI is trivial - no information is nec-
essary. CaseD is a complete interaction because the decision
cannot be made, regardless of what one agent responds, un-
less he knows the other agent’s response. CasesSandS′ are
partial interactions between the two dimensions. Thus, when
just two dimensions are considered, there are only three ulti-
mate forms of inter-agent communication. They are written:

X; X[Y]; X∧Y

Whenever additional dimensions are considered, they will
be either necessary or optional. One can thus deduce that in a
space with n binary dimensions, an inter-agent communica-
tion process that progresses from implicit distributed knowl-
edge to enough common knowledge to assign an example to
the correct subclass is an expression that only supports the
operators∧ (necessary) and [ ] (optional).

The sixteen binary operators of propositional logic can be
related (with one rotation) to two-dimensional concepts, as
indicated in Figure 9.

Piaget’s INRC group, or the Klein four-group is a group
of 4 elements that combines two cyclical, 2-element groups.
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Figure 9. Concepts and propositions.

Table 4
Conceptual forms up to four dimensions.
D1 D2 D3 D4
X X[Y] X[Y[Z]] X[Y[Z[W]]]

X[Y[Z∧W]]
X[Y∧Z] X[Y∧Z[W]]

X[Y∧Z∧W]
X∧Y X∧Y[Z] X∧Y[Z[W]]

X∧Y[Z∧W]
X∧Y∧Z X∧Y∧Z[W]

X∧Y∧Z∧W

If we add a third 2-element group, we obtain an 8-element
group, called the extended INRC group (Apostel, 1963).
The extended group operates within the sixteen operators of
propositional logic, with the same categories as in Figure
9. One can understand this for geometrical reasons (Klein
four-group operators are simple or combined rotations in this
case).

The relevance of the notation in terms of necessary and
optional dimensions can easily be verified. For instance, for
all junctions and all implications, it may suffice to have a
single piece of information (e.g., p false forp∧q; p true for
p∨q; q true forp ↓ q; q false forp← q, etc.), but it is nec-
essary to have two pieces in half of the cases (this can easily
be seen by inverting the truth values in the above examples
in parentheses).

Starting from these three basic expressions in two dimen-
sions, each formula is obtained by adding a new agent, con-
nected by one of the two operators. This is a recursive
concept-building process that justifies the name “graceful”
complexification. Table 4 gives the different forms up to four
dimensions.

The formula of a concept condenses the set of operations
applicable to each positive and negative example of the con-
cept. It is easy to find them and list them in disjunctive form.
For instance, forX[Y∧Z[W]], we get:

X∨ (X∧Y∧Z)∨ (X∧Y∧Z∧W)

Figure 10. Rotations and enantiomorphisms.

In other words, each example requires the contribution of ei-
ther a single agent, or of three or four agents. Another exam-
ple is:

X[Y[Z[W]]]≡ X∨ (X∧Y)∨ (X∧Y∧Z)∨ (X∧Y∧Z∧W)

Appendix 3. Counting and Characterizing Con-
cepts

Before coming back to how our multi-agent system works,
let us make a few remarks about concepts with up to three
and sometimes four dimensions. Note that the fourth dimen-
sion is generally the upper limit of human working memory,
not because the boundary between 3 and 4 or between 4 and
5 is decisive, but because one must consider the entire set of
relations between the elements in working memory. So it is
not a loadE of elements that has to be considered but a load
of P(E), that is, all subsets ofn elements, since every subset
also constitutes an example of the concept. Three elements
generate a load of 8, 4 a load of 16, 5 a load of 32, etc. This
approach has now been adopted by authors desirous of recon-
ciling Piaget’s theory and information-processing theory (the
so-called neo-Piagetian trend) and who, following Pascual-
Leone’s (1970) seminal work, developed various models re-
volving around the new “magical number” four (Case, 1985;
Cowan, 2001, though not neo-Piagetian; Fischer, 1980; Hal-
ford, Wilson, & Phillips, 1998). We find this natural limita-
tion in many human activities, such as the four main phrases
of a sentence, the four singing voices, the four suits in a deck
of cards.

Every concept possesses numerous realizations in its
space that are equivalent save one transformation (rotations
and enantiomorphisms, Fig. 10) and one substitution of the
subclasses of positive and negative examples (e.g. the set of
small roundandred squareexamples is equivalent to the set
of big roundandblue squareexamples insofar as the same
subclasses are opposed). For instance:

Thus, many concepts are equivalent. Table 5 gives a count
of concepts up to four dimensions.

Figure 11 gives a count of the equivalent forms for three
dimensions. Each concept is labelled with an identification
number (in boldface), which will be used in the remainder of
this article.

Table 6 gives a count of the different forms in three di-
mensions. It does not bring out any notable regularities.

Appendix 4. Multi-Agent System and Terminating
the Identification Process

To describe the functioning of the multi-agent system in
greater detail, we devised a table that explains the speaking
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Table 5
Number of different concepts up to four dimensions.

Number of positive examples .
Dimensions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1
2 1 2 1
3 1 3 3 6 3 3 1
4 1 4 6 19 27 50 56 74 56 50 27 19 6 4 1

Figure 11. Equivalent forms in three dimensions.

turns, and we present some illustrations for the parallel ver-
sion. Table 7 shows Concept 12. The rows contain the ex-
amples of the vertices of a cube, numbered as in Figure 1B,
which will be used here for all cases presented (the positive
examples of Concept 12 are 1, 5, and 6).

The first three columns give the situation the agent in that
column leaves for the other two agents if he speaks about the
example in that row. For three dimensions, the first speaker
leaves asquarewhich can only have four forms, as we saw
above: identification achieved (0 speakers) denotedI (though
it is not used in the present tables), dual interaction (2 speak-
ers) denotedD, simple interaction (1 or 2 speakers) denoted
S, and choice (1 speaker) denotedC. The ambiguous case
is the simple interaction, where the agent who talks does not
knows exactly what reduction of uncertainty he brings (but

Table 6
The 13 concepts in three dimensions.

Number of positive examples .
Formula 1 2 3 4
X ∗

X[Y] ∗

X∧Y ∗∗

X[Y[Z]] ∗

X∧Y[Z] ∗ ∗∗ ∗∗

X[Y∧Z] ∗ ∗

X∧Y∧Z ∗

only knows it in a probabilistic manner). For each example
in the table, after the simple interaction (S), the real situation
is shown in brackets (D or C). It is normal that an agent who
leaves a simple interaction expresses itself before an agent
leaving a dual one, although his actual uncertainty reduction
will not be greater in one out of four cases. The Table 7
allows us to write the identification formula:X∧Y[Z]4. This
formula means that the contribution of two agents is always
necessary, and that it is sufficient only for four of the eight
examples. Four times then (index ofZ), the third agent will
have to speak. The same principles apply to Concept 11 (Ta-
ble 8).

Let us look in detail at a final case, Concept 10 (Table 9).
The situation is very revealing about the uncertainty effects
generated by a simple interaction. In all cases, it would be
possible to identify the example with only two agents. Yet
it is impossible for the system to know this at the onset, and
all agents are in the same situation, that of leaving a simple
interaction, with 2/3 leading to a choice and 1/3 leading to a
dual interaction on examples 1, 3, 4, 5, 6, and 8. All in all,
since 6 x 1/3 = 2, the formula isX ∧Y[Z]2. Although this
case is different from the preceding ones, themselves differ-
ent from each other, their formulas are identical (disregarding
the index in certain cases). We will say that they are isotopes
for the purposes of our classification.

Concept 10 is exemplary of the ambiguities that arise
when we go from a state of distributed knowledge to a state
of common knowledge in a community of agents. To better
illustrate this ambiguity, let us borrow an example from Fa-
gin, Halpern, Moses, and Vardi (1995), who gave the exam-
ple of three wives likely to be cheated on by their husbands
but each one having knowledge only of the misfortune of the
others, should the case arise. The state of the world isA+ B−
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Table 7
Communication table for the examples of Concept 12 (ex+ = 1, 5, 6).

Size Color Shape Speaks Speaks Speaks
(S) (C) (F) 1st 2nd 3rd

1 D S[D] D C S∨F F ∨S
2 D D D S∨C∨F S∨C∨F S∨C∨F
3 S[C] S[C] D S∨C S∨C ∗∗∗∗

4 D S[C] S[C] C∨F C∨F ∗∗∗∗

5 S[D] D D S C∨F F ∨C
6 D D S[D] F S∨C C∨S
7 S[C] S[C] S[C] S∨C∨F S∨C∨F ∗∗∗∗

8 S[C] D S[C] S∨F F ∨S ∗∗∗∗

Note.This table gives the situation after the first speaking turn. A similar table is needed for the second turn; the reader can easily guess
what it would be.

Table 8
Communication table for Concept 11 (ex+ = 1, 2, 6, 7).

Size Color Shape Speaks Speaks Speaks
(S) (C) (F) 1st 2nd 3rd

1 S[C] S[D] C F S ∗∗∗∗

2 S[C] C C C∨F S ∗∗∗∗

3 S[C] D C F S ∗∗∗∗

4 S[D] S[D] S[D] S∨C∨F S∨C∨F S∨C∨F
5 S[C] C C C∨F F ∨C ∗∗∗∗

6 S[C] C D C S ∗∗∗∗

7 S[D] D D S C∨F F ∨C
8 S[C] C D C S ∗∗∗∗

Note.This table gives the situation after the first speaking turn. A similar table is needed for the second turn; the reader can easily guess
what it would be.

C+ (i.e., A andC have unfaithful husbands). In this system,
we can describe the following two levels for knowledgeKn
= “There is at least one wife whose husband is unfaithful”:

1. Mutual knowledge:
∀i, j,k ∈ E = (A,B,C), i knowsKn, and knows thatj knows
Kn and thatj knows thatk knowsKn.

2. Shared knowledge:
∀i ∈ E = (A,B,C), i knowsKn. Each agent knows that there
is at least one+ but doesn’t know that the others know. The
present example stabilizes in this state if no information is
communicated. Individually, by way of her perception of the
situation, each of the three wives considers the proposition
“There is at least one+” to be true. But she cannot infer
anything about what the others know.A could very well
think thatB only sees one+ (if A thinks she is− herself),
that C sees no+’s and that she believes there are none (if
A thinks she is− herself and assumes thatC does likewise).
We end up with a considerable distortion between the state
of the world (A+ B−C+) and the attribution ofA’s belief to
C (A− B−C−).

Appendix 5. Galois Lattices

A complexity hierarchy for concepts up to three dimen-
sions can be proposed based on the ordering of multi-agent
formulas in a Galois lattice (Figure 12).

A lattice is an ordered set in which any two elements al-

ways have an upper bound and a lower bound (Davey &
Priestley, 1990). Let a and b be two elements, the upper
bound (a∪b) is the supremum of these two elements. Rea-
soning in the same way for the lower bound, the infemum
of a andb is (a∩b). More specifically in the framework of
formal conceptual analysis, two lattices are merged to form
pairs and this gives a Galois lattice (Ganter & Wille, 1991).
Each multi-agent formula is seen as a pair (A,B) such thatA
is the set of concepts learnable from a communication for-
mula (definition in extension) andB is the set of constraints
imposed upon a formula (definition in intension). In the lat-
tice, each formula assigned to a location can learn all subor-
dinate concepts. For simplicity’s sake, across from each for-
mula, we give only the most complex concept learnable from
it. The processing cost is incurred when equivalent commu-
nication structures (isotopes) process different concepts (e.g.
Concepts 8, 9, 10, 11, and 12 for the structureX ∧Y[Z]n).
In this case, the structure occurs several times with different
cost indexes. The criterion that orders the structures is:

(A1,B1) < (A2,B2)≡ A1⊆ A2≡ B2⊆ B1

Thus, a complex communication protocol enables learn-
ing of more concepts than a protocol that is subordinate to
it. The more constraints one imposes on a communication
protocol (fewer agents, less communication), the smaller the
number of concepts the protocol can learn. Inversely, the
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Table 9
Communication table for Concept 10 (ex+ = 1, 2, 5, 6).

Size Color Shape Speaks Speaks Speaks
(S) (C) (F) 1st 2nd 3rd

1 S[C] S[D] S[C] S∨C∨F S∨C∨F (S∨F)
2 S[C] S[C] S[C] S∨C∨F S∨C∨F ∗∗∗∗

3 S[C] S[C] S[D] S∨C∨F S∨C∨F (S∨C)
4 S[D] S[C] S[C] S∨C∨F S∨C∨F (C∨F)
5 S[D] S[C] S[C] S∨C∨F S∨C∨F (C∨F)
6 S[C] S[C] S[D] S∨C∨F S∨C∨F (S∨C)
7 S[C] S[C] S[C] S∨C∨F S∨C∨F ∗∗∗∗

8 S[C] S[D] S[C] S∨C∨F S∨C∨F (S∨F)
Note.This table gives the situation after the first speaking turn. A similar table is needed for the second turn; the reader can easily guess
what it would be.

fewer the constraints, the more a formula is able to learn
numerous, complex concepts (even if the available agents
or communications become useless for simpler concepts).
Starting from the top of the lattice, we find a concept (A,B)
such thatB does not contain the constraint present in the
concept below it (e.g., compared to the formulaX ∧Y∧Z,
we impose only 4 calls onZ for the conceptX∧Y[Z]4). This
process is repeated in a top-down manner until all constraints
have been used (we then obtain a unary agential protocol:X).
The concepts are treated in the same way via a bottom-up
process: moving up the lattice, we gradually add the learn-
able concepts (this means that the formulaX∧Y∧Z permits
learning of all concepts in three dimensions). This lattice
provides a theoretical concept-complexity order. An analogy
can be drawn with the complexities described in the introduc-
tion and used in computer science theory. The total number
of agents in a formula corresponds to the maximal compres-
sion of the group of speakers. This number is like random
Chaitin-Kolmogorov complexity; it is the cardinal of the set
of all necessary independent agents. Then, during the iden-
tification of all examples of the concept, the agents will be
called a certain number of times. This reuse of agents can be
likened to Bennett’s logical depth4.

4 Remember that Chaitin-Kolmogorov complexity corresponds
to the size of the smallest program capable of describing (comput-
ing) an object. This size can be measured in terms of information
quantity. Now, Bennett’s logical depth corresponds to the computa-
tion time of this smallest program. In other words, it is proportional
to the number of times the different routines will be called. A Tower
of Hanoi with 70 rings has a very low random complexity level (a
few lines of code in PROLOG for instance) but an immense logical
depth since a good PC today would need more time than the age of
the universe to move the 70 rings from left to right. A book written
by a chimpanzee typing on a keyboard will have a random com-
plexity identical to its size (assuming the chimp doesn’t develop any
motor key-association habits) since all information will be reduced
to the randomness of the typer’s keystrokes (Gell-Mann, 1994) and
a logical depth of zero except the time to copy the book.
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Figure 12. Galois lattice of concepts in the parallel version.


