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Abstract This paper reports a study of a multi-agent

model of working memory (WM) in the context of

Boolean concept learning. The model aims to assess

the compressibility of information processed in WM.

Concept complexity is described as a function of

communication resources (i.e., the number of agents

and the structure of communication between agents)

required in WM to learn a target concept. This model

has been successfully applied in measuring learning

times for three-dimensional (3D) concepts (Mathy and

Bradmetz in Curr Psychol Cognit 22(1):41–82, 2004).

In this previous study, learning time was found to be a

function of compression time. To assess the effect of

decompression time, this paper presents an extended

intra-conceptual study of response times for two- and

3D concepts. Response times are measured in recog-

nition phases. The model explains why the time re-

quired to compress a sample of examples into a rule is

directly linked to the time to decompress this rule

when categorizing examples. Three experiments were

conducted with 65, 49, and 84 undergraduate students

who were given Boolean concept learning tasks in two

and three dimensions (also called rule-based classifi-

cation tasks). The results corroborate the metric of

decompression given by the multi-agent model, espe-

cially when the model is parameterized following static

serial processing of information. Also, this static serial

model better fits the patterns of response times than an

exemplar-based model.

Introduction

Mathy and Bradmetz (1999, 2004) (see also Mathy,

2002) conceived a set of simple multi-agent models of

Boolean concept complexity (the complete set of

Boolean concepts in two and three dimensions is

shown in Fig. 1). These multi-agent models aim to

express the compressibility of a conceptual structure in

the fewest number of decisions made by agents to

know the category of all examples of a concept. This

article switches from conceptual complexity (assessed

by learning times or accuracy) to example complexity

(assessed by response times). We present three

experiments showing that one of the multi-agent

models (called the static serial multi-agent model be-

cause it is similar to a strict rule-based model) provides

the best predictions of response times in recognition

phases, despite its inability to ideally compress infor-

mation. We conclude that subjects do not compress

rules in an optimal way. Rather, subjects use non-

optimal rules in which information is rigidly ordered.

Finally, we test against the static serial multi-agent

model a simple version of the exemplar model (No-

sofsky, 1986). The overall results show that the multi-

agent model provides a detailed description of the

processing speed underlying decision-making about

category membership.
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Département de Psychologie,
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Rules, algorithms and compression

In order to know whether or not a number is even, one

could divide this number by two, look at the remain-

der, and then note if the remainder is equal to zero.

There is, however, a way of avoiding this kind of pro-

cedure that imposes a new calculation for each num-

ber: it is easier to tell if a number is even by considering

only the last digit. This rule is ‘‘if the last digit is 0, 2, 4,

6, 8, then the number is even’’. Such a rule is a com-

pressed calculation in that it is a simplification that

does not lead to any loss of information.1

A second kind of compression derives from the fact

that stimuli are not treated alike by a rule. Each

stimulus may require a particular number of steps to be

processed. This is very intuitive: to checkmate with a

queen against the king is easier than with a knight and

a bishop; using the Erathostene’s sieve method, it is

easier to see that 1951 is a prime number than to see

that 2209 is not because one has to reach 44 to know

that 1951 is prime rather than 47 to know that 2209 is

not; it is easier to recognize a gazelle in a herd of ze-

bras than in a herd of antelopes, and so forth. This

article will deal with this latter kind of compression.

We will show that the time required to recognize a

stimulus depends on the number of steps that have to

be followed when using a given rule.

The following points describe the general problem

that we will investigate:

1. Each rule is seen as an algorithm (a function) that

may produce different output values depending on

the given input values. (If the rule is ‘‘red = -

positive example’’ and if a red square is given in

input, the rule will produce the output ‘‘positive

example’’.)

2. Following the terms of the Port Royal logicians

(Arnauld & Nicolle, 1662/1996), each rule is taken

to be a compressed definition of a concept. In this

way, a rule (intension) is more compressed than

the list of examples of a given concept (extension).

(The rule ‘‘red = positive example’’ is more com-

pressed than saying that ‘‘red square = positive

example, red circle = positive example, red dia-

mond = positive example, etc.’’)

3. Each rule may be more or less compressed, given

that optimizations can be found to shorten the

length of a rule. This paper assumes that all rules

are compressed to the maximum for the learning

system considered.

4. Given a rule, some inputs require fewer steps to

produce an output. For instance, the rule

‘‘(red = positive) OR (big blue dia-

monds = positive)’’ would take less time to indi-

cate that a big red square is positive (there is one

piece of information to check) than to indicate that

a big blue diamond is positive (there are three

pieces of information to check).

To sum up, given that a rule is a compressed number

of operations that produces an output, the time to pro-

duce an output is a decompression time. The appendix

develops the links between advanced theories of com-

pression in computer science and processing of infor-

mation, in regard to the way that compression mirrors

basic economy principles of the mind. Before develop-

ing the learning system considered here, we present in

the following section the material to be learned.

Concept learning

This research focuses on the ability to successfully dis-

cover and use arbitrary classification rules, also called

concept learning tasks (Bourne, 1970; Bruner, Good-

now, & Austin, 1956; Levine, 1966; Shepard, Hovland,

& Jenkins, 1961). In concept learning, learners are

shown a sequence of multi-dimensional stimuli and

formulate a hypothesis concerning the instances that do

or do not belong to a category, until they inductively

reach the target concept. The three basic types of

classification rules in two dimensions are presented in

Fig. 1, as well as the thirteen in three dimensions. Each

vertex may represent the combination of Boolean input

variables leading to compound stimuli wherein shape,

color and size are mixed. For instance, four figures

would be generated from two binary dimensions each

having two values. The two category responses are

represented in Fig. 1 by black circles (positive exam-

ples) and by vertices without black circles (negative

examples). A concept is thus thought of as the set of all

instances that positively exemplify a classification rule.

A learning system may compress the information

held by different conceptual structures into simple

rules, depending on the sum of the regularities present

in those structures. We develop here several multi-

agent models (reducible to decision tree models) to

1 Rule creation is the motor of conceptual progress in many
domains. Before Descartes, there was a procedure for each
equation, depending on the terms to the right and the left of the
equal symbol. Descartes came up with a considerably more
economical system of calculations by putting the terms on the
left and a zero on the right. This discovery brought him up
against the reticence of people to accept that ‘‘something’’ could
be equal to ‘‘nothing’’. Here, we see that all scientific revolutions
take time. Similarly, it took a couple of decades for Kepler to
admit that planetary orbits were not circular, even though
elliptical orbits actually simplified the calculus.
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show how humans compress concepts using simple

rules but why they do not compress them using the

simplest rules. We will see that this is closely linked to

the computation demanded when inducing concepts.2

Multi-agent models of concept learning

In studying structural biases in concept learning, one

investigates the system of relations in the concept to be

learned and asks how the organization of relations

might affect learning processes. The concept of struc-

ture is not easy to grasp: the perception of structure is a

quite different matter from the perception of shapes or

other physical stimuli (Lockhead & Pomerantz, 1991).

A structured system can be defined as one that con-

tains redundancy. To assess whether humans compress

the information held by conceptual structures, Feld-

man (2000) proposed a metric based on logical com-

pressibility of disjunctive normal forms (DNFs)

describing concepts. It was shown that conceptual dif-

ficulty reflects intrinsic logical complexity on a wide

range of concepts (up to four dimensions).

Using a model proposed by Mathy and Bradmetz

(1999, 2004) have evaluated Feldman’s model with

respect to a series of multi-agent models developed to

be analogous to the functioning of working memory

(WM). Multi-agent models are collective problem-

solving methods. This relatively old idea, developed in

psychology (Minsky, 1985; Selfridge, 1959), has been

recently applied in computer science for various

architectures (e.g., Ferber, 1999) and in cognitive sci-

ence to model social problems (Axelrod, 1997; Rich-

ards, McKay, & Richards, 2002). A multi-agent system

is made of numerous mindless agents capable of

reaching goals by collaboration. Competence and

knowledge is not centralized but distributed among

different agents who communicate with each other.

In the model proposed here, we assume that each

dimension of a concept is identified by a single agent,

and that information must be exchanged until the

Fig. 1 Two- and three-dimensional Boolean concepts. Positive
examples are indicated by black circles; negative examples are
represented by empty vertices. There are only three possible
concepts in two dimensions and 13 in three dimensions. The
other concepts are equivalent by rotation or mirror reflection.
2D-1, 2D-2, and 2D-3 are simply arbitrary notations to
distinguish the concepts in 2D from the three first ones in 3D.
Concepts in parentheses are not studied in Experiments 1 and 2
because they do not lead to different patterns of response times
given models

2 In artificial intelligence, a theoretical analysis of inductive
reasoning has been introduced by Gold (1967). Gold developed
the notion of convergence (identification in the limit) by
understanding that the most accurate hypotheses are reached
faster when beginning to test the smallest ones (see also Osh-
erson, Stob, & Weinstein, 1986, for a development of Gold
theories). This principle, which consists of choosing the simplest
rules is known as Occam’s razor, which guarantees both fast
learning and accurate generalizations (see a study of the sim-
plicity principle in unsupervised categorization in Pothos &
Chater, 2002; a study of learning based on the principle of
minimum description length (MDL) in Fass & Feldman, 2002;
Feldman, 2003b for a short introduction to simplicity principles
in concept learning and Feldman, 2004, for a study of the sta-
tistical distribution of simplicity). Recently, computational
learning theories have achieved success with the probably
approximately correct (PAC) learning theory of Valiant (1984)
(Anthony & Biggs, 1992; Hanson, Drastal, & Rivest, 1994a, b;
Hanson, Petsche, Kearns, & Rivest; Kearns & Vazirani, 1994).
This approach is a general framework (e.g., sample complexity,
Vapnik–Chernovenkis dimension, etc.) for a lot of inductive
learning models like neural networks or inductive logic pro-
gramming (De Raedt, 1997). A second approach, which we will
follow in this paper, aims to develop symbolic learning algo-
rithms based on decision trees, and is very well suited to the non-
fuzzy Boolean concepts studied here (Quinlan, 1986; see
Mitchell, 1997, for a general presentation or Shavlik & Diette-
rich, 1990, for readings in machine learning).
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stimulus presented can be identified as a positive or

negative example of a given concept. Our model pro-

poses the idea that agents are part of the WM. On the

first hand, the memory span corresponds to the sum of

individual pieces of information held by agents. Each

piece of information is processed by an agent installed

in one slot of the WM. For instance, if the memory

span is seven items, it means that up to seven agents

can be recruited simultaneously and/or serially to reach

a decision. On the other hand, the manipulation of

information between agents when they communicate is

seen as constituting the executive component of the

WM. In this view, the memory span and executive

functions are integrated in a single model: the memory

span is represented by agents and the executive func-

tion is represented by information manipulated and

exchanged between agents.

The inherent advantage of this multi-agent model is

that it allows us to address the issue of the nature of

information processing (static serial, dynamic serial, or

random) to make classification decisions. When agents

communicate, do they communicate each in turn al-

ways in the same order, each in turn in a varying order,

or in a random order? These different models offer

several ways of compressing a given sample of exam-

ples into a logical formula. Our results indicated that

the dynamic serial model leading to the most com-

pressed formulas does not give the best fit with the

experimental data (Mathy & Bradmetz, 2004). Con-

versely, the results confirmed that the static serial

model, which imposes a fixed information-processing

order, is the best model to fit the data, even if it does

not lead to the maximal compression of information

compared to the dynamic serial model. The aim of this

paper is to verify this result in a completely different

context of measurement, moving from inter-conceptual

measures of learning times to intra-conceptual mea-

sures of response times. The random model, which was

way behind the dynamic and static models, will not be

considered in this study.

In the distributed model proposed here, agents have

information about a single dimension and are unaware

of what others know. If a red triangle is presented, the

color agent knows that the stimulus is red and the

shape agent knows that the stimulus is triangle. Infor-

mation must be exchanged (if necessary) until the

stimulus is identified as a positive or a negative

example. As common knowledge is being built,

speaking turns are assigned on the basis of an entropy

calculation, which enable agents to compare the

amounts of information they are capable of contrib-

uting (a method used in Quinlan, 1986). When an agent

releases a piece of information, the agent knows how

much its contribution reduces the uncertainty. For in-

stance, if the color agent notices that all red examples

are positive examples (after the sample of examples is

presented at least once), the color agent is able to

classify correctly these examples alone afterwards,

meaning that the information gain produced by the

color agent is maximal for red examples. However, if

half the blue examples are positive and the other half

are negative, the color agent cannot reduce the

uncertainty for blue examples. In this latter case, the

color agent leaves one bit of information to other

agents if this agent speaks first for blue examples (in

other terms, there is no information gain). To make

this model more concrete, one can imagine a card

game where, before each round, each agent states how

much he will reduce the uncertainty by laying down a

card.

The main idea that underpins the model proposed

by Mathy and Bradmetz is that agents enable common

knowledge (when agents communicate their pieces of

information, knowledge becomes public) to be pro-

duced from distributed knowledge (agents receive only

one piece of information). As in classical distributed

systems in which processing is split up, each agent

merely receives information from a given dimension

and is blind to others. However, common knowledge

made up of several pieces of information is usually

necessary to solve problems. Hence, agents have to

communicate as the need arises to coordinate infor-

mation, and therefore progressively adapt a minimal

communication structure to the problem.3

The communication demand can hence be consid-

ered a measure of the information complexity of a

concept (see Hromkovič, 1997, for a development of

communicational complexity).

Communication protocols for concept 2D-1

A communication protocol is a set of communications

that agents need to follow to classify perfectly all

examples of a given concept. In a communication

protocol, letters represent agents and exponents rep-

resent the number of times agents are required for a

single presentation of a sample of positive and negative

examples. If an agent is required four times for a single

presentation of a sample, the exponent will be set to

3 This progressive adaptation recalls ‘‘in the spirit’’ the procedure
of identification in the limit (Gold, 1967), the cascade correlation
algorithm for neural networks (Fahlman & Lebiere, 1990), the
RULEX model that begins with the simplest rules and adds
exceptions if necessary (Nosofsky, Palmeri, & McKinley, 1994b),
and the SUSTAIN model of category learning in which clusters
are recruited progressively (Love, Medin, & Gureckis, 2004b).
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four, meaning that this agent would be required 40

times for ten presentations of a sample (i.e., ten

blocks). The communication protocols given below are

the best (i.e., minimal and stable) protocols achieved

by the multi-agent systems after agents are presented

with several learning samples.4 In the following

examples, we explain the communication protocols

produced by the static and dynamic serial multi-agent

models.

For example, let us consider the two-dimensional

(2D) Boolean world based on two shapes and two

colors. Following the conceptual structures in Fig. 2, it

is assumed that the two stimuli on the left are blue, the

two on the right are red, the two top ones are triangles,

and the two bottom ones are squares. The concept

2D-1 is modeled by a unary communication protocol

X4, because only one agent X (here the shape agent) is

required four times to sort the four positive and neg-

ative examples of the concept. The shape agent only is

necessary and sufficient to categorize the four stimuli

because the concept separates the triangles from the

squares. Both dynamic and static models lead to the

same formula. Communication protocols can be re-

duced to decision trees in which only two leaves cor-

responding to the two categories are graphed. The

decision tree associated with the formula X shows that,

if the stimulus is a triangle, the agent X will follow the

left branch and conclude that the stimulus is a triangle

(because the leaf is marked with a positive symbol); in

the case where the stimulus is a square, X will follow

the right branch and conclude that the stimulus is a

negative example of the concept (the leaf is a negative

example). Because X is required four times (again, for

a single presentation of the training sample), the

exponent is equal to four.

Communication protocols for concept 2D-2

We now explain concept 2D-2 labeled X4[Y]2 for the

static serial model: this concept requires a partial

interaction between two agents, indicated by the

brackets. In the static serial model, there are two

equivalent possibilities of ordering agents. The first

possibility is that the color agent speaks first. For the

two red stimuli, the color agent (X) will be sufficient to

conclude that the stimuli are positive examples. For the

two red stimuli, the color agent will follow the left

branch in the decision tree. In contrast, when speaking

first for the blue ones, the color agent leaves one bit of

information and the second speaker Y (the shape

agent) will be necessary to complete the task. In the

decision tree, when the color agent makes its infor-

mation public for the blue ones, it follows the right

plain branch of the tree. When the second agent (the

shape agent) gives its information, the shape agent

follows the left dotted line when the stimulus is triangle

and the right one when it is a square. The ... [...] binary

operator indicates that Y is not required all the time:

the interaction between X and Y is therefore partial.

Given that the second speaker is recruited only twice

when presenting a single sample of examples, we can

set the exponent to 2. Note that there is a second static

serial order when the shape agent speaks first and the

color agents speaks second: In this case, the same

communication protocol and the same decision tree

holds.

The formula for the dynamic serial model is more

compressed: X4[Y]1. The advantage of the dynamic

serial model is that agents are not constrained by a

fixed order of communication. The root represents the

choice to be made by the first speaking agent X, no

matter who he is. For that reason, both the color and

the shape agents can replace X for one given concept.

For the concept 2D-2, the color agent is sufficient to

categorize the red stimuli as positive example and the

shape agent is also sufficient to categorize the triangle

stimuli as positive examples (one of the two agents is

randomly chosen for the red square). In contrast, the

red circle stimulus requires two agents to be sorted

because an interpretation of silence is not allowed in

this model (either the color agent gives its piece of

information followed by the shape agent, or the shape

agent gives its piece of information followed by the

color agent). The best way to structurally represent

dynamic serial formulas is to see them as decision trees

in which the same path could be followed by several

agents. X4[Y]1 therefore means that an agent X is re-

quired for all stimuli, but also that an optional agent Y

is needed to classify one of the stimuli.

There are correspondences between the multi-agent

model and other models of concept learning based on

rules. In terms of rules and when considering only the

positive examples, the static serial model would cor-

responds to [IF red THEN positive. IF blue THEN [IF

triangle THEN positive]], whereas the dynamic model

would simply corresponds to [IF red OR triangle

THEN positive]. It is immediately apparent that the

static serial model is more cumbersome, in that it

4 We will not present the method for obtaining communication
protocols, as it is already explained in Mathy and Bradmetz
(2004). The method is based on computing the information gain
for each piece of information given by agents until there is no
more uncertainty about the class. The knowledge of an agent is
computed by the conditional entropy quantifying the remaining
uncertainty about the class once the agent’s knowledge is made
public.
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requires one more embedding structure. In terms of

DNFs and when focusing on positive examples only (cf.

Feldman, 2000), the concept 2D-2 would be repre-

sented by [red OR (blue AND triangle)] in the static

model and by [red OR triangle] in the dynamic serial

model. Note that, even if not always strictly equivalent,

most formulas given by the dynamic model are similar

to the ones given by both classical models of concept

learning (e.g., Bourne, 1970) and recent models

(Feldman, 2000). Therefore, the static serial model is

the only truly novel proposition presented here.

Communication protocols for concept 2D-3

The 2D-3 concept could be modeled by a X4[Y]4 for-

mula for both static and dynamic models, but in view of

the fact that two agents are required for all stimuli, a

new binary operator representing a complete interac-

tion gives the following formula X
4

� Y4 or simply

(X � Y)4.

Communication protocols for concepts in 3D

The same principles lead to the formulas in three

dimensions. All formulas are given in Table 1.

To sum up, several key assumptions are made to

describe formulas associated with each concept:

• Formulas represent the minimal inter-agent com-

munication protocols.

• Embedded communications are reduced to a com-

munication between a first speaker, a second

speaker and so forth. Each letter X, Y, etc. stands

respectively for the first and the second speaker

(and so on). The number of letters (i.e., the number

of agents) directly represents the number of agents

in WM that are recruited in concept learning.

• The square brackets indicate that the speaker is

optional and the exponent linked to the bracket

indicates the number of times the nested agent has

to provide a statement. The presence of square

brackets also indicates a partial interaction between

two agents.

• The ‘‘�’’ symbol means that information provided

by both agents is needed for each example in the

concept. An X � Y formula is said to be isomorphic

to a first order interaction between variables in

statistics, also called complete interaction.

• When adding supplementary dimensions, inter-

agent communications are either required

Fig. 2 The three conceptual
structures in two dimensions
associated with the
communicational protocols
required to categorize all
stimuli
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(represented by the operator �) or optional (rep-

resented by [ ]). Communications are added in a

recursive manner.

• All communication operations can also be enumer-

ated through DNFs. For example, X [Y � Z [W]]

can be read: X � (X � Y � Z) � (X � Y � Z � W).

This indicates that an example of a concept requires

the contribution of one or three or four nested

agents communicating their information sequen-

tially. For this reason, both the static and the

dynamic model are considered as serial models

because information for a given stimulus to be

classified is given sequentially in both models. It can

be noted again that the letters do not represent

specific agents, but rather the order in which

information is given. This is the main advantage

of the multi-agent system. Indeed, the notation

given by the multi-agent model gives a more

comprehensive representation of disjunctive for-

mulas than the extended representation based on

disjunctive forms used by most logical models.

Pattern distinctions

Figures 3 and 4 indicate the number of required

agents for the static and the dynamic serial models,

for the concept 2D-1 and 3D concepts respectively.

These Figures only include concepts for which the

dynamic and the static models lead to different pat-

terns. For the static serial model, an average pattern

is computed from each of the possible patterns

resulting from the different orderings of agents. In

Fig. 3, for example, assuming that we run the multi-

agent model several times, 50% of the time two

agents will be necessary to classify stimuli 2 and 4 if

the color agent speaks first whereas two agents will be

necessary to classify stimuli 3 and 4 if the shape agent

speaks first. These two patterns lead to a mean

number of 1.5 agents for stimulus 2.

The same way of computing the mean number of

agents in the static serial model has been applied for

all concepts in three dimensions in Fig. 4. In three

dimensions, the number of possible patterns varies

from one to six because there might be six different

ordering of the three agents. However, we only indi-

cate half of them to clarify the presentation (this

simply limits the number of cubes drawn). For in-

stance, instead of indicating the pattern resulting from

the order shape-color-size and a second pattern

resulting from the order shape-size-color, we only

indicate the pattern resulting from the average of

both of them. The presence of a decimal in the

computation of the number of required agents always

indicates that two orders have been averaged. A

dotted line within the cubes indicates the separation

made when the first agent gives its piece of informa-

tion. For instance, the resulting pattern resulting from

the average between the order shape-color-size and

the order shape-size-color, the dotted line would

separate objects of different shapes.

Objectives

We make the assumption that the number of pieces of

information for each stimulus indicated in Figs. 3 and 4

can easily be recovered from the analysis of response

times to the learned concept (in a recognition test).

The first experiment was conducted to measure re-

sponse times to each instance of the 2D-2 concept and

compare them to the patterns of the theoretical num-

ber of agents in the static and the dynamic model. The

second experiment aimed to measure response times of

3D concepts (2, 3, 4, 5, 8, 11, 12) that also lead to

different patterns of the theoretical number of agents

in the static and the dynamic models. The third

experiment was designed to contrast the static serial

model (as we find the static model to be the more

accurate in the first two experiments) with the exem-

plar model.

Table 1 Dynamic and static communication protocols triggered
by 2D and 3D concepts

Concept Dynamic Static

(2D-1) X4 X4

2D-2 X4[Y]1 X4[Y]2

(2D-3) X4 � Y4 X4 � Y4

(1) X8 X8

2 X8[Y]2 X8[Y]4

3 X8[Y[Z]1]1 X8[Y[Z]2]4

4 X8[Y[Z]1/3]4 X8[Y[Z]2]4

5 X8[Y[Z]2]4 X8[Y � Z]4

(6) X8 � Y8 X8 � Y8

(7) X8 � Y8 X8 � Y8[Z]4

8 X8 � Y8[Z]1 X8 � Y8[Z]2

(9) X8 � Y8[Z]2 X8 � Y8[Z]4

(10) X8 � Y8[Z]2 X8 � Y8[Z]4

11 X8 � Y8[Z]2 X8 � Y8[Z]4

12 X8 � Y8[Z]4 X8 � Y8[Z]6

(13) X8 � Y8 � Z8 X8 � Y8 � Z8

Sum 201.3 224

Bold concept numbers are those for which the dynamic serial
model and the static serial model lead to different predictions of
mean response times. The patterns of intra-conceptual response
times are not automatically distinguishable when formulae are
different. Concepts in parentheses are not studied in Experi-
ments 1 and 2 because they do not lead to different patterns of
response times given models
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Experiment 1: two-dimensional concept use

The present experiment was designed to measure intra-

conceptual response times to stimuli in a previously

learned concept (i.e., during a recognition phase). Our

objective was to show that stimuli require different

response times to be categorized, as might be predicted

from the multi-agent model where the number of pie-

ces of information to make decisions about category

membership varies. The second goal was to determine

which multi-agent model (dynamic versus static) is best

able to describe the pattern of response time for stimuli

within each concept. We chose to begin with the 2D-2

concept which led to different theoretical patterns of

numbers of agents in the static and the dynamic mod-

els. It is important to understand that the number of

pieces of information required to identify each instance

of a concept in the multi-agent models is assumed to be

defined once the communication protocol is estab-

lished (i.e., once the concept is learned). Accordingly,

the responses times were measured after a given

learning criterion had been met, ensuring that the

target concept had been learned and could be applied

without error.

Method

Participants

Participants were 65 high school students

and university undergrad volunteers.

Stimuli

It is worth mentioning that the choice of physical

dimensions is quite important in testing the cumulative

effect of several dimensions in WM. In this study, input

variables were compound stimuli wherein shape, color,

size and a frame were amalgamated. In 2D (see stimuli

in Fig. 5), figures varied along two dimensions each

having two values, leading to a sample of four figures

(e.g., a red square, a blue square, a red circle and a blue

circle). The colors and shapes of the different concepts

were randomly chosen from a set of values (triangle,

square, oval, blue, pink, red, green, circle frame, and

diamond frame).

Procedure

Tasks were computer-driven. On the day of the

experiment, participants completed tutorials on a

computer, which instructed them in basic computer

skills and the procedures required for the experimental

task. Participants were explained how to classify stim-

uli in two locations (either a school bag or a trash can)

and how to succeed with a classification (fill up all the

progress bar). The stimuli were presented in a window

on the left of the school bag and the trash can (see

Fig. 5). Participants were required to classify stimuli as

positive examples or negative examples of a concept by

using the mouse to click on a school bag or on a trash

can, respectively. The icon that was not chosen (the

trash can or the schoolbag) disappeared so as to facil-

itate the association of stimuli to their respective cat-

egory. Feedback was provided at the bottom of the

screen, indicating if the response was right or wrong

and adding a picture of a smiling or an angry man.

Each correct response scored one point on a progress

bar, represented by an empty box that was filled in

when they gave a correct response. The number of

points in the progress bar dedicated to learning was

equal to twice the length of the training sample, that is

Fig. 3 Intra-conceptual
analysis of the number of
recruited agents in the
dynamic and static multi-
agent models for the 2D-2
concept. The number of
agents corresponds to the
number of pieces of
information required to make
the decision about category
membership. Therefore, the
number of recruited agents
also represents the response
times to make the decision
about category membership
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2 · 2N (N = number of dimensions). Once the concept

had been learned, response times were measured on a

further 2 · 2N points. Consequently, subjects had to

correctly categorize stimuli on four consecutive blocks

of 2N stimuli. For example, participants learning a 2D

concept had to fill up a progress bar of 16 points.

Participants were not informed that the second half of

the testing was a recognition test.

On each trial, a response dead line of eight seconds

was imposed. Failure to meet the deadline cost par-

ticipants three points on their progress bar. However, a

wrong response resulted in loss of all points scored so

far. Correct response was rewarded with a digital im-

age (animals, fractals, etc.) when they succeeded. In

Experiment 1, the stimuli varied along two binary-

valued dimensions (see the four stimuli in Fig. 5). In

each block of 2N stimuli, each stimulus appeared once

in a random order, and the first stimulus of each block

was different from the last of the previous block. An

assignment of physical dimensions was randomized for

each concept and each subject. In Experiment 1, all

subjects started the experiment after a short warm-up

trial.

Results

Response times are summarized in Fig. 6. The re-

sponse times showed a lot of variability, and they were

positively skewed due to a few extreme scores corre-

sponding to subjects who took more time to respond.

Consequently, we indicate in Table 2 median re-

sponse times and base-e logarithms of response times

so as to remove the effect of these extreme scores on

further analysis of the data. Median response times or

base-e logarithms of response times show a very good

fit with the number of agents per stimulus5predicted by

the static model. That is, the response times have

higher medians for stimuli that require more pieces of

information. The within-subjects analysis of variance

applied on base-e logarithm response times confirms

that stimuli are not categorized at the same rate

[F(3,192) = 5.16; P = 0.002].

To test the agreement of data with the dynamic or

static models, we computed correlations between the

response times per subject and the number of agents

per stimulus for each pattern of the static and the dy-

namic models. Then, we determined which model

(dynamic vs. static) was the closest to the subject pat-

terns (a pattern for a given subject is the set of

empirical response times for a given concept). Note

that in the static model, there are two theoretical pat-

terns corresponding to the two manners of ordering the

variables in the 2D-2 concept (as shown in Fig. 3).

Then, we counted the number of times the static model

was superior to the dynamic serial model. The results

are shown in Table 3. For the 2D-2 concept, the results

go against the dynamic serial model: on 50 occasions

(order 1: 30; order 2: 20) out of 65 the response times

are closer to the static serial model [v2(1) = 18.8;

P < 0.001]. Thus, the static model proved to be sig-

nificantly superior to the dynamic model, with a greater

correlation between the number of required agents per

Fig. 4 Intra-conceptual analysis of the number of required
agents in the dynamic and static multi-agent models for concepts
2, 3, 4, 5, 8, 11, and 12. Patterns 1, 2, and 3 of the static model are
shown from left to right. The last displayed pattern is the average
pattern resulting from all possible orders of agents. Because six
patterns are possible (resulting from the six possible orderings of
agents), they are averaged by pairs to produce a maximum
display of three patterns. The nth averaged pair is represented by
the nth displayed pattern

5 The numbering of stimuli used in Table 2 (ex1, ex2, ex3, and ex4)
is shown in Fig. 3.
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stimulus and the response times. This suggests model-

ing information processing in WM using distributed

models that process information in a fixed order.

Discussion

When response times were measured in a recognition

phase, our results showed that the static serial model

yielded a valid measure of processing speed when

categorizing stimuli of the 2D-2 concept. In conclusion,

the measure of response times sheds lights on how

information is processed in WM, which uses two

memory slots in a static serial way. The stimuli are not

categorized at the same rate because the decompres-

sion time of the algorithm used in WM does not use the

same number of pieces of information for all stimuli.

To classify the positive examples, the corresponding

decision rule of this static communication protocol is

‘‘if x1 then ex+, if x2 then [if y1 then ex+]’’. This is not

intuitive compared to the more compressed rule pro-

duced by the dynamic model (if x1 then ex+, if y1 then

ex+). The rule produced by the dynamic model is

equivalent to the minimal DNF. Consequently, this

result casts doubt on models that use compression of

DNF as a metric of conceptual complexity (cf. Feld-

man, 2000). This result also challenge models based on

neural networks: a simple perceptron would obviously

set the weights on x1 and y1 to sufficient values to make

the output fire for x1, y1, or both (although it is not

obvious what would predict strict parallel models in

this case when dimensions are seen as stochastic vari-

ables; cf. Townsend & Wenger, 2004).

Fig. 5 Screen shot of
windows in Experiments 1, 2,
and 3
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Experiment 2: three-dimensional concept use

Analysis of response times in Experiment 1 clearly

indicated that adults use 2D concepts by following the

static serial communication complexity given by the

multi-agent model. Experiment 2 aims to assess whe-

ther these findings remain valid when the target con-

cepts are based on three dimensions.

Method

Participants

This experiment used 49 new students, from the same

population as in Experiment 1.

Procedure

Using the learning program described in Experiment 1,

each participant was tested on the 13 concepts in three

dimensions. Tasks were undertaken in seven sessions,

one session per day. The stimuli varied along three

binary-valued dimensions, i.e., shape, color and frame

(see stimuli in Fig. 5). The assignment of physical

dimensions was randomized for each concept and each

subject. The presentation order of concepts was coun-

terbalanced to reduce the risk of carry-over effects

from one concept to the next. Following the criteria

described in Experiment 1, participants had to fill up a

progress bar of 32 points. The response times were

measured for the last 16 correct responses. Finally,

they were rewarded with a digital image (animals,

fractals, etc.) when they succeeded. Only then were

they able to pause before learning another concept.

Results

We conducted an analysis of response times for the

concepts listed in Fig. 4 because the dynamic model and

the static model lead to different patterns of response

times for these concepts. Boxplots of Fig. 7 show posi-

tively skewed patterns of response times similar to those

observed in Experiment 1, simply indicating that some

subjects took more time to respond. Dispersion of re-

sponse times is analogous for all other concepts.

Descriptive statistics are given in Table 4 (the results are

also given in a more readable form in Fig. 8). For all

concepts (except concept 8), the within-subjects analy-

ses of variance on the log of response times show that

stimuli are not categorized at the same rate [F(7, 336)

= 4.14; P < 0.001, for concept 2; F(7, 336) = 14.8;

P < 0.001, for concept 3; F(7, 336) = 8.64; P < 0.001,

for concept 4; F(7, 336) = 6.25; P < 0.001, for concept

5; F(7, 336) = 1.12; ns, for concept 8; F(7, 336) = 4.54;

P < 0.001, for concept 11; F(7, 336) = 3.35; P < 0.01,

for concept 12].

We computed correlations between the median re-

sponse times and the number of agents with a view to

contrasting the dynamic and the static models. The

results shown in Table 3 indicate that the static serial

model always shows a better fit of the median response

times. We also investigated which mode (dynamic

versus static) was the closest to the subject patterns.

With respect to the static serial model, there were

several patterns corresponding to the several possible

ways of ordering the variables (between two and six

orderings, averaged by pairs, as shown in Fig. 4). As in

Experiment 1, we counted the number of times the

static serial model turned out to be superior to the

Fig. 6 Boxplots of response times for both positive and negative
examples of the 2D-2 concept. The stimulus labels 1–4 are given
in Fig. 3

Table 2 Response times for both positive and negative examples
of the 2D-2 concept studied in Experiment 1

Examples

1a 2 3 4

Mean RT 1.22 1.41 1.45 1.58
SD (RT) 0.64 1.57 0.69 0.69
Mean ln (RT) 0.11 0.27 0.27 0.38
Median RT 1.04 1.29 1.30 1.45
Static 1 1.5 1.5 2
Dynamic 1 1 1 2

RT response times, SD standard deviation of mean time, ln
natural logarithm, Static mean number of agents per example
required by the static model, Dynamic number of agents per
example required by the dynamic model
a Examples 1–4 in the 2D-2 concept are indicated in Fig. 3. Bold
lines indicate the closest patterns
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dynamic serial model by computing the correlations

between the mean response times per subject and the

number of theoretical agents per stimulus. The results

given in Table 4 show a decided difference between

the dynamic and the static models: for all concepts in

3D, the static serial model better suited the data.

Discussion

We have made the assumption that the processing of

dimensions by WM slots directly corresponds to the

work of simple agents that use minimal inter-agent

communication to identify and classify each example of

target concepts. The multi-agent model takes into ac-

count the number of slots required per example and

the number of communications used to classify each

example. A distinction can be made according to

whether communications are dynamic serial (when

there is no order constraint between agents for the

whole concept) or static serial (when a fixed ordering

between agents is imposed for the whole concept).

When response times were measured after the 3D

concepts were learned, our results showed that the

static serial model yielded a valid measure of pro-

cessing speed when categorizing stimuli, as in Experi-

ment 1. Indeed, the theoretical computation of the

number of pieces of information per example (when

processing is static) seems to predict patterns of re-

sponse times for the 3D concepts.

When comparing the number of agents required for

each example of the 3D concepts, a clear outcome is

that static serial processing of information leads to less

compressed communication protocol formulas than the

ones given by the dynamic serial model. This indicates

that suboptimal rule compressions may be privileged

by human learners. One explanation could be that

static serial processing in the multi-agent model leads

to lower compressions of communication protocols but

communication protocols are generated faster by the

system (Mathy & Bradmetz, 2004). When learning

concepts people would have a better performance at

the end using the dynamic method, but the time re-

quired to learn the concept would be greater.6

Experiment 3: static serial model versus exemplar
models

Links to prototype and exemplar models

of categorization

The third experiment was designed to contrast the static

serial model with an exemplar model. We will see that

the relation between these models is peculiar for some

concepts, when mean theoretical response times pro-

duced by both models are perfectly correlated. Exem-

plar models, as opposed to prototype models, are very

well suited to nonlinearly separable concepts, like some

of those in this study. These models are a generalization

Table 3 Number of patterns (by subject) that fit either the static model or the dynamic one

D Concept nDyn. nStat. Order 1 Order 2 Order 3 v2(1) rMed.SM rMed.DM

Exp. 1 2D 2D-2 15 50 30 20 – 18.8*** 0.985** 0.706
Exp. 2 3D 2 13 36 15 21 – 10.8*** 0.744* 0.732*
Exp. 2 3D 3 12 37 16 12 9 12.8*** 0.980** 0.869**
Exp. 2 3D 4 10 39 39 – – 17.2*** 0.943** 0.920**
Exp. 2 3D 5 15 34 34 – – 07.4*** 0.929** 0.730*
Exp. 2 3D 8 4 45 23 22 – 34.3*** 0.106 0.083
Exp. 2 3D 11 10 39 27 12 – 17.2*** 0.783* 0.538
Exp. 2 3D 12 6 43 16 11 16 27.9*** 0.552 0.393

Order 1, Order 2, and Order 3 are represented in Figs. 4 and 9

D number of dimensions, nDyn. number of patterns by subject that fit the dynamic model, nStat. number of patterns by subject that fit
the static model, rMed.DM correlation between the median response times given in Table 4 and the number of agents per example in the
dynamic model, rMed.SM correlation between the median response times given in Table 4 and the mean number of agents per example
in the static model

*Significant at the 0.05 level

**significant at the 0.01 level

***significant at the 0.001 level

6 Let us make an analogy: when memorizing before dialing a
phone number, it takes less time to dial a number after its entire
memorization (let us imagine 6 s to memorize the entire number
plus 3 s to dial, for a total of 9 s), than to quickly look up and
memorize the numbers and dial them group by group (e.g., four
groups, and 3 s per group, for a total of 12 s). Nevertheless, a lot
of people choose the second solution because starting to mem-
orize an entire number takes more time (i.e., 6 s in our example)
than directly memorizing the first group and then dialing it (i.e.,
3 s). Of course, this analogy should be experimentally examined.
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of the prototype models because they assume that the

exemplar that has the highest probability of belonging

to a category is the prototype. However, it is difficult to

understand the role of a prototype in nonlinearly sep-

arable concepts because the prototype does not provide

a good summary of the category members (Yamauchi,

Love, & Markman, 2002). In exemplar models, cate-

gorization is based on the computation of similarities

within a set of exemplars stored by subjects (for a re-

view, see Hahn & Chater, 1997). According to simi-

larity-based approaches, the more similar an item is to

all known members of a category, the more likely this

item will be placed in this category. Exemplar models

are also called context models because exemplars form

a context for computing similarities between an item

and each exemplar of a category (Estes, 1994; Kru-

schke, 1992; Medin & Schaffer, 1978; Nosofsky, 1986;

Nosofsky, Gluck, Palmeri, McKinley, & Gauthier,

1994a, b; Nosofsky, Kruschke, & McKinley, 1992).

The objective of the third experiment is to show the

correspondence between the rule-based patterns of

response times given by the static serial multi-agent

model and the ones produced by the exemplar model.

The main goal is not really to make models compete as

we do not use the most complex version of the exem-

plar model (that would be the case if we implemented

all parameters and if we used continuous weighting

values), but rather to show that very similar patterns of

response times are given by the static serial multi-agent

Fig. 7 Boxplots of response times for both positive and negative
examples of the concept 2. The example labels 1–8 are given in
Fig. 1 in concept 1

Table 4 Means and median response times of both positive and negative examples of concepts 2, 3, 4, 5, 8, 11, 12 (in Exp. 2), and
concept 10 (in Exp. 3) once they are learned

Concept 2 Concept 3 Concept 4 Concept 5

M Me SM DM M Me SM DM M Me SM DM M Me SM DM

ex1 1.31 1.21 2 2 0.93 0.86 2 1 1.40 1.21 2 2 1.55 1.38 3 2
ex2 1.26 1.09 2 2 1.13 1.08 3 3 1.51 1.32 2.5 2 1.49 1.27 3 3
ex3 1.11 1.11 1.5 1 0.81 0.75 1.3 1 1.44 1.29 2.5 2 1.39 1.35 3 3
ex4 1.16 1.02 1.5 1 0.86 0.82 2 1 1.58 1.37 3 2.3 1.59 1.53 3 2
ex5 1.09 0.88 1.5 1 0.80 0.74 1.3 1 1.11 0.99 1 1 1.05 0.99 1 1
ex6 1.09 0.90 1.5 1 0.91 0.84 2 1 1.23 1.15 1 1 1.19 1.09 1 1
ex7 1.01 0.93 1 1 0.78 0.69 1 1 1.21 1.07 1 1 1.22 0.99 1 1
ex8 0.95 0.88 1 1 0.76 0.71 1.3 1 1.16 1.01 1 1 1.25 0.99 1 1
rmodel-Med 0.74 0.73 0.98 0.87 0.94 0.92 0.93 0.73

Concept 8 Concept 11 Concept 12 Concept 10 (Exp. 3)

M Me SM DM M Me SM DM M Me SM DM M Me SM EM

ex1 1.60 1.40 2 2 1.52 1.28 2 2 2.00 1.90 3 3 1.26 1.38 2 1.22
ex2 1.50 1.37 2 2 1.55 1.43 2.5 2 1.75 1.44 3 3 1.58 1.68 2.66 1.56
ex3 1.54 1.50 2.5 2 1.78 1.64 2.5 2 1.69 1.49 3 3 1.51 1.74 2.66 1.56
ex4 1.38 1.33 2 2 1.88 1.73 3 3 1.73 1.57 2.6 2 1.49 1.64 2.66 1.56
ex5 1.63 1.63 2 2 1.45 1.26 2 2 1.80 1.60 3 3 1.46 1.74 2.66 1.56
ex6 1.46 1.26 2 2 1.57 1.35 2.5 2 1.68 1.48 2.6 2 1.45 1.67 2.66 1.56
ex7 1.53 1.43 3 3 1.78 1.66 2.5 2 1.77 1.56 2.6 2 1.68 1.76 2.66 1.56
ex8 1.50 1.33 2.5 2 1.70 1.57 3 3 1.53 1.33 2 2 1.32 1.43 2 1.22
rmodel-Med 0.11 0.08 0.78 0.54 0.55 0.25 0.96 0.96

Bold columns indicate the closest patterns

M mean response times, Me median response times, SM mean number of agents in the static model, DM number of agents in the
dynamic model, EM theoretical response times for the exemplar model, rmodel-Med correlation between the model and the median
response times
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model without relying on similarity computations.

However, when models are given equivalent chances,

the static serial model turns out to fit better individual

patterns of response times than the ones produced by

the exemplar model.

Following Nosofsky’s (1986) generalized context

model of categorization (GCM), exemplars are

represented in a psychological space. Distance be-

tween two stimuli i and j is given by the Minkowski

metric

Fig. 8 Theoretical intra-
conceptual analysis of the
number of required agents in
dynamic and static mode for
the concepts 2D-2, 2, 3, 4, 5, 8,
11, and 12, and empirical
results given as median
response times per example

Psychological Research

123



dij ¼
Xn

a¼1

xia � xja

��r��
" #1=r

; ð1Þ

where r = 1 when the distance is city-block, and where

xia is the value of stimulus i along dimension a. Similarity

g between two stimuli i and j is an exponentially

decreasing function (called the exponential decay

function) of psychological distance

gij ¼ e�dij : ð2Þ

This decay function is better adapted to the city-block

metric (Shepard, 1987). Given the total similarity of a

stimulus s to all exemplars of categories X and Y, the

probability of responding with category X is given by

Luce’s choice rule:

PðX=sÞ ¼

P
x2X

gsx

P
x2X

gsx þ
P
y2Y

gsy

: ð3Þ

In order to make a comparison with the static serial

model, we computed the similarities among stimuli in

all Boolean concepts studied in Experiments 1 and 2

using the three equations above. We used a city-block

metric (adequate for separable dimensions) in a tradi-

tional multi-dimensional scaling model (Minkowski

Metric), and transforming similarities in probabilities

by the Luce’s (1963) choice rule (cf. Chapter 10 in

Lamberts, 1997). We found that probabilities of classi-

fication of exemplars are inversely related to the mean

number of pieces of information for the static serial

model. That is, the exemplar ex1 in Fig. 3 has the

highest probability of being classified as a positive

example and is considered a prototype. Exemplars ex2

and ex3 are equally considered as having a medium

probability of being positive examples and ex4 has the

lowest probability of being classified as a positive

example. If we hypothesize as Nosofsky and Palmeri

(1997) and Nosofsky and Alfonso-Reese (1999) suc-

cessfully did, that the response times depend on the

similarity pattern of a stimulus to the exemplars from

both categories, the pattern given by the exemplar

model is very similar to the one given by the mean static

serial model. To summarize, when taking the inverse

probabilities given by the exemplar model to measure

response time, the inverse probabilities are correlated

with the theoretical response times determined by the

static serial model (cf. last column in Table 5).

Experiments 1 and 2 showed that the static serial

model best fits the data of the present study. We will

therefore consider only the static model as a comparison

with the exemplar model. The major difference between

the exemplar models and our static serial multi-agent

model is that mean theoretical patterns of response

times in the static serial model is a mixture of several

static serial strategies that may be used by subjects,

whereas the exemplar model computes just one pattern.

In this experiment, we compare the static serial

model to GCM. Concept 10 serves as a basis for the

comparison between the two models, as the patterns of

theoretical response times they produce are perfectly

correlated for this concept. A second advantage of this

concept is that the six possible orders of variables lead

to the same equivalent decision trees. These orders are

shown in Fig. 9, together with the three different static

serial orders that can be distinguished from them. The

theoretical mean response times computed by mixing

the different static orders are given in the last row of

Fig. 9. This experiment was run with fixed stimuli (see

top of Fig. 9) in order to precisely study the distribu-

tion of subjects’ serial strategies. We also add a com-

parison of GCM and the static model for each of the

concepts studied in Experiments 1 and 2.

Method

Participants

This experiment included 84 naive students, from the

same population as in Experiments 1 and 2.

Procedure

Using the learning program described in Experiment 1,

each participant was given the concept 10. The stimuli

varied along three binary-valued dimensions. The

assignment of values of shape, color, and filling were

the same for all subjects (top of Fig. 9). This method is

necessary to detect which of the six serial strategies

subjects are following. Using the criteria described in

Experiment 1, participants had to fill up a progress bar

of 32 points. The response times were measured for the

last 16 correct responses. Subjects responded using the

keyboard.

Results

The mean and median response times for concept 10

are given in Table 4, next to the theoretical response

times for the static serial model and the exemplar

model. As in Experiments 1 and 2, the boxplots of

Fig. 10 show a positively skewed pattern of response

times, indicating that median response times are more

representative than means. The correlations between
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Table 5 Number of patterns (by subject) that fit either the exemplar model or the static serial one

D nS Concept nEx. nStat. Order 1 Order 2 Order 3 v2(1) rEx.Stat rMed.Ex rMed.Stat

Exp. 1 2D 65 2D-2 19 46 27 19 – 11.2*** 0.925** 0.847** 0.985**
Exp. 2 3D 49 2 13 36 14 22 – 10.8*** 0.925** 0.770* 0.744*
Exp. 2 3D 49 3 13 36 15 12 09 10.8*** 0.859** 0.918** 0.980**
Exp. 2 3D 49 4 08 41 41 – – 22.2*** 0.859** 0.836** 0.943**
Exp. 2 3D 49 5 12 37 37 – – 12.8*** 0.744* 0.524 0.929**
Exp. 2 3D 49 8 13 36 17 19 – 10.8*** 0.603 0.259 0.106
Exp. 2 3D 49 11 11 38 26 12 – 14.9*** 0.945** 0.682 0.783*
Exp. 2 3D 49 12 05 44 16 10 18 31.0*** 0.883** 0.273 0.552
Exp. 3 3D 84 10 15 69 24 19 26 34.7*** 1*** 0.956** 0.956**

The v2(1) is meant to compare columns nEx. and nStat

D number of dimensions, ns number of subjects, nEx. number of patterns by subject that fit the exemplar model, nStat. number of
patterns by subject that fit the static serial model; Order 1, Order 2, and Order 3 are represented in Figs. 4 and 10, rEx.Stat correlation
between the theoretical response times in the exemplar model and those in the static serial model, rMed.Ex correlation between the
medians given in Table 4 and the theoretical response times in the exemplar model, rMed.Stat correlation between the medians given in
Table 4 and the theoretical response times in the static serial model

*Significant at the 0.05 level

**significant at the 0.01 level

***significant at the 0.001 level

Fig. 9 Modeling of concept
10 by the static serial model. F
filling, C color, S shape, FCS
means that the order of
decisions is filling, color, and
shape
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the median response times and predictions from both

models are shown in Table 5. A subject-by-subject

analysis of results is necessary since mean response

times across subjects confirm both models. Table 5

shows that when looking at individual patterns, the

static serial model explains the results better in 69 out

of 84 subjects than the exemplar model [v2(1) = 34.7;

P < 0.001]. The distribution of strategies among the

three indistinguishable orders (order 1: 24; order 2: 19;

order 3: 26) is uniform [v2(2) = 1.1; ns], meaning that

subjects randomly chose the order of variables in their

static serial decisions. This result indicates that mean

response times are better explained as a mixture of

static serial decisions than by patterns given by GCM.

We applied the same method to all concepts studied

in Experiments 1 and 2. Table 5 displays the distribu-

tion of strategies among the three possible orders given

in Fig. 4 (from left to right), but the distribution is less

informative here than in Experiment 3 because

dimensions were randomly chosen in these experi-

ments. The correlations between median times given in

Table 4 and theoretical response times are more often

higher for the static model than for the exemplar

model. The subject-by-subject analysis better shows

the superiority of the static serial model. For instance,

regarding the 2D-2 concept in Experiment 1, we tested

which of the three theoretical patterns (two from the

static serial model and one from GCM) had the best fit

to subject response times. It turns out that subject

performance is closer to one of the two static serial

patterns 46 times (order 1: 27; order 2: 19) out of 65

[v2(1) = 11.2; P < 0.001]. The superiority of the static

serial model is also corroborated for all concepts

studied in Experiment 2.

In Table 5, the evaluation of models may be biased

in favor of the static serial model because the static

serial model predicts more patterns of RT than the

exemplar model. For instance, for concept 3, one could

argue that results are simply distributed randomly

among the theoretical patterns given by both models

(respectively, 13, 15, 12, and 9). Summing the number

of subjects fitting one of the patterns of the static serial

model (15 + 12 + 9 = 36) might give a higher a priori

chance of gaining a large number of cases in favor of

the static serial model. To avoid this problem, we can

increase the power of the exemplar model by adding a

parameter w (Nosofsky, 1986) called the selective

attention weight on dimensions a:

dij ¼
Xn

a¼1

wa xia � xja

���� r

" #1=r

: ð4Þ

The selective attention weight assumes that dimensions

can be differentially attended to in specific contexts.

This is implemented in stretching or shrinking dimen-

sions depending on whether or not they are attended

to, which causes changes when computing similarities

(cf. Lamberts, 1997, chapter 10, for a detailed expla-

nation).

Instead of taking continuous values for the attention

parameter (which would give too much power to the

exemplar model), we chose nine different combinations

of weight in two dimensions and ten combinations in

three dimensions. In two dimensions, the weights are

respectively [.5 .5], [.1 .9], [.2 .8], [.3 .7], [.4 .6], [.9 .1],

[.8 .2], [.7 .3], and [.6 .4]. In three dimensions, we took

different basic combinations of values: One in which all

dimensions are equally attended; a second in which the

first dimension is more attended than the second, and the

second more attended than the third; a third combina-

tion in which one dimension is more attended than the

two remaining ones (which are equally attended). By

taking the different permutations on the three dimen-

sions, the ten resulting weight matrices are respectively

[.33 .33 .33], [.1 .3 .6], [.1 .6 .3], [.3 .1 .6], [.3 .6 .1], [.6 .1 .3],

[.6 .3 .1], [.6 .2 .2], [.2 .6 .2], and [.2 .2 .6]. Consequently,

there are now a priori more chances for the data to fit the

exemplar model because it produces now nine (in 2D) or

ten (in 3D) theoretical patterns, whereas the static serial

model produces between 1 and 6 patterns.

We computed again how many times the observed

patterns fitted one of the theoretical patterns given by

both models. The results are given in Table 6 that shows

the frequencies of the observed patterns for each of the

theoretical patterns. For instance, for concept 2D-2, 26

and 19 subjects respectively fitted the first and the

Fig. 10 Boxplots of response times of both positive and negative
examples of the concept 10. The example labels are given in
Fig. 1
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second theoretical pattern given by the static serial

model, whereas only 1, 3, 2, 1, 5, 3, 5 subjects, respec-

tively, fitted the exemplar model with the weight

matrices number 1, 2, 3, 4, 5, 8, and 9. To match previous

tables, we summed the results by models and computed

a simple v2. The results are seven times out of nine in

favor of the static serial multi-agent model. For concept

number 4, the result is not significant and for concept 10,

it is significantly in favor of the exemplar model. Let us

study in detail concept 4 for which the result is not sig-

nificant: 31 subjects fit the average pattern [2 2.5 2.5 3 1 1

1 1] given in Fig. 4, for examples numbered [1 2 3 4 5 6 7

8]. We remind the reader that the first order is itself a

computed average of two static serial patterns. For

concept 4, these two patterns are [2 2 3 3 1 1 1 1] and [2 3

2 3 1 1 1 1]. There are respectively 11 and 20 subjects who

fitted these patterns. For this concept, there are there-

fore more subjects fitting one of the patterns given by

the multi agent system than any of the patterns given by

the exemplar model [i.e., 20 for the static serial model

against 6, the maximum frequency observed for the

exemplar model; v2(1) = 7.5, P = 0.006].

General discussion

Summary

Several parameterizations of a multi-agent model of

WM have been conceived by Mathy and Bradmetz

(2004) in order to account for conceptual complexity

and to compete with logical formalizations (Feldman,

2000, 2003a). This model can be readily related to the

WM functions described in earlier research. Commu-

nications correspond to the operations controlled by

the executive function and the number of agents re-

quired simply corresponds to the storage capacity.

Conceptual complexity is measured by the minimal

communication protocol that agents use to categorize

stimuli. Communication protocols are simpler to read

than the formulae produced by logical formalization, as

the necessary dimensions are represented only once. In

our model, the communication protocol X � Y � Z is

much more understandable than its equivalent reduced

DNF x(y¢z � yz¢) � x¢(y¢z¢ � yz). Communication pro-

tocols are also isomorphic to ordered decision trees.

Contrary to other hypothesis-testing models (Nosof-

sky, Palmeri, & McKinley, 1994b), we presume that

there is no fundamental distinction between rules and

exceptions: they may simply be differentiated by the

length of branches.

The static and the dynamic parameterizations al-

ready provided better predictions of inter-conceptual

learning times (Mathy & Bradmetz, 2004) than logical

formalizations. A second finding was that the static

serial model is more accurate than the dynamic serial

model. The present paper aimed at testing the static

and dynamic models when predicting intra-conceptual

response times. The goal was to map the complexity of

learning a rule (i.e., compressing a sample of examples

Table 6 Number of patterns (by subject) that fit either one of the patterns given by the exemplar model (when the selective attention
parameter is added) or the static serial one

Concept nEx. nStat. Order 1 Order 2 Order 3 W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 v2(1)

2D-2 45 20 26 19 – 1 3 2 1 5 0 0 3 5 – 9.6**
2 34 15 13 21 – 0 2 3 2 2 4 1 0 0 1 7.4**
3 34 15 15 12 09 0 1 2 1 2 3 4 0 0 0 7.4**
4 31 18 31 – – 0 0 4 4 6 2 1 0 1 0 3.5NS
5 37 12 37 – – 0 2 4 0 1 0 3 2 0 0 12.8**
8 32 17 15 17 – 0 7 0 5 1 2 1 1 0 0 4.6*
11 34 15 24 10 – 0 1 1 2 7 2 1 1 0 0 7.4**
12 36 13 12 7 17 0 1 0 2 3 2 4 0 0 1 10.8**
10 26 58 7 10 9 9 9 7 7 7 5 8 2 0 8 12.2**

The v2(1) is meant to compare columns nEx. and nStat

nEx. number of patterns by subject that fit the exemplar model, nStat. number of patterns by subject that fit the static serial model;
Order 1, Order 2, and Order 3 are represented in Figs. 4 and 10; For concept 2D-2, W1, W2, W3, W4, W5, W6, W7, W8, and W9 represent,
respectively, the selective attention weights on dimensions 1 and 2, given in the format [Weight_on_dimension_1
Weight_on_dimension_2]: [0.5 0.5], [0.1 0.9], [0.2 0.8], [0.3 0.7], [0.4 0.6], [0.9 0.1], [0.8 0.2], [0.7 0.3], and [0.6 0.4]; for 3D concepts, W1,
W2, W3, W4, W5, W6, W7, W8, W9 and W10 represent, respectively, the selective attention weights on dimensions 1, 2 and 3, given in the
format [Weight_on_dimension_1 Weight_on_dimension_2 Weight_on_dimension_3]: [0.33 0.33 0.33], [0.1 0.3 0.6], [0.1 0.6 0.3], [0.3 0.1
0.6], [0.3 0.6 0.1], [0.6 0.1 0.3], [0.6 0.3 0.1], [0.6 0.2 0.2], [0.2 0.6 0.2], and [0.2 0.2 0.6]

*Significant at the 0.05 level

**significant at the 0.01 level

***significant at the 0.001 level
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given in extension into a shorter rule) to its decom-

pression time (i.e., recovering the class of an example

by applying the rule). The multi-agent models give a

thorough description of intra-conceptual complexity in

a recognition phase, by explaining why some stimuli

are more difficult to categorize. This study showed that

the static model provided better predictions of intra-

conceptual response times in a recognition phase than

the dynamic model.

Limitations

Use of the mouse in Experiments 1 and 2 may have

introduced some noise into the response times. Use of

the mouse was intentionally applied because it mat-

ched parallel research involving children. This proce-

dure was chosen to prevent subjects from making

errors of classification by pointing to the classes using a

mouse (Mathy, 2002). There might be issues in mea-

suring response times with a mouse as it is certainly a

bit slower than going from one key to another. Still, the

static and the dynamic models are discriminated in this

study for all concepts, and the static serial model is

systematically the best at fitting the data. Moreover,

Experiment 3 which used keys for category responses

also corroborated the static serial model.

Prediction of response times

A relevant comparison for the current work is related

to neural networks applied to categorization. Unfor-

tunately, those models (e.g., Nosofsky et al., 1994a, b)

are unable to predict processing speed when catego-

rizing stimuli. Once a neural network has set the con-

nections between neurons, the time to produce outputs

(i.e., the categories) is the same for all inputs (the

stimuli), because all stimuli are categorized by the

same set of connection weights. The measure of re-

sponse times is also missing from the major studies that

have been conducted on Boolean concepts (cf., Feld-

man, 2000, 2003a)

The multi-agent models we tested are able to indi-

cate the number of minimal pieces of information re-

quired to categorize each example of a concept. We

hypothesized that a stimulus requiring more pieces of

information to be categorized (i.e., representing a

longer path in a decision tree) would correspond to

higher response times in the application phase of an

already-learned concept (i.e., in a recognition phase).

The second hypothesis was that the static serial model

that best fitted the data in Mathy and Bradmetz (2004)

would also be valid in the present experiments because

the time required to induce and compress a rule

(studied by Mathy and Bradmetz) is directly linked to

the time needed to decompress it (studied in this arti-

cle).

The results in our three experiments showed that

information processing in WM is performed serially

and in a static way. The static serial model better fitted

the data in the first and the second experiment. These

results corroborate the hypothesis that the complexity

of a rule can be studied through its decompression time

and confirm the better fit of the static serial model

found by Mathy and Bradmetz.

The results conflict with the model of Feldman

(2000, 2003a) which uses an implicit dynamic algorithm

to compute the minimal Boolean formulae (although

the compression algorithms are slightly different). The

results also conflict with neural network models, as

shown in the discussion of Experiment 1. The dynamic

model allows flexible decisions as the ordering of

agents can vary from one example to another. The

trade-off is that more computations are necessary to

compute the best ordering for each example of a given

concept. The static model merely aims at producing the

best ordering of agents for the whole sample of

examples of a given concept. It uses simple entropy

computation to determine the amount of information

left by an agent. The model finds the smallest decision

tree in which each level corresponds to the pieces of

information given by a particular agent, meaning that

the ordering of agents must be fixed when categorizing

all examples of a given concept. Even though most

researchers would be reluctant to return to old models

in artificial intelligence based on simple decision trees

(e.g., Hunt, Marin, & Stone, 1966), our results show

that the static serial model corresponding to a simple

decision tree model better fits the experimental results.

The problem of the time of access to categories has

also recently been investigated by Gosselin and Schyns

(2001) in taxonomies: the SLIP model is able to predict

the time of access to categories by implementing

strategies that are similar to the ones used in the 20-

question game7

These strategies correspond directly to the compu-

tation of entropy in base 2 used in our static serial

model (for instance, guessing a card of a deck of 32

requires five binary questions). Questions in the 20-

question game have to be well-chosen and well-or-

dered to guess as quickly as possible the nature of an

object (Richards & Bobick, 1988; Siegler, 1977). The

same strategy drives our multi-agent model during the

identification process. That is why each communication

7 One of the two players chooses a word and the other must guess
it after having asked as few yes–no questions as possible.
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protocol in our multi-agent model can be seen as a tree

in which each branch corresponds to a response to a

binary question.

Links to prototype and exemplar models

of categorization

The results are also relevant to prototype and exemplar

models of categorization. Prototype theories assume

that classification decisions are based on comparisons

between stimuli and an abstract prototype usually de-

fined as the central tendency of the category distribu-

tion (for an overview, see Osherson & Smith, 1981;

Rosch & Mervis, 1975; Smith & Medin, 1981). The

relevance of response times is well known in research

based on prototype theory because the prototype is

more quickly assigned to its category than other

examples (for instance, see Rips, Shoben, & Smith,

1973; Rosch, 1973), but few other specific hypotheses on

response times can be found in the literature, except the

RT-distance hypothesis, according to which reaction

times decreases with the distance in psychological space

from the stimulus to the decision bound that separates

categories (Ashby, Boyton, & Lee, 1994). However,

decision bound models seem very inadequate when

dealing with some highly non-linearly separable

dimensions in Boolean concepts used in this study.

In general, prototype theories are distinguished from

exemplar theories because the similarities are only

computed in comparison to the prototype instead of

being compared to each exemplar of the category.

Some researchers (e.g., Myung, 1994) regard exemplar

models as unreasonable due to the sum of computation

required to compute similarities, while others find them

to be very parsimonious (see the interesting study of

exemplar models in avian cognition in Huber, 2001).

The exemplar-based random walk model (EBRW) has

also been used to account for response times in various

categorization tasks by predicting that response times

depend on the similarities of a stimulus to the exemp-

lars of categories (Nosofsky & Palmeri, 1997), but the

model is most likely to operate in domains involving

integral dimensions. This model also involves massive

similarity computations performed over these stored

exemplars. The same observation can be made about

another exemplar model, EGCM-RT (the extended

generalized context model for reaction times), except

this model provides an accurate account of categoriza-

tion response times for integral-dimension stimuli and

for separable-dimension stimuli (Lamberts, 2000).

The simple comparison made here between exem-

plar models and our multi-agent model here needs

further consideration. Our use of discrete values for

the attention parameter instead of taking continuous

values amounts to weakening the power of exemplar

models. Using continuous values in the exemplar

model would have increased its general fit to the data.

We used discrete values for the attention parameter in

order to equal a priori chances of fitting the data in the

concurrent models. We believe that a study of a pos-

sible mimicry between models would certainly be

worth considering in a future study. In this regard,

tools available in model selection (Roberts & Pashler,

2000; Zucchini, 2000) would certainly help decide

which model is the best, depending on the number of

parameters included in the models.

Contrary to previous research corroborating models

through learning times and response accuracy (e.g.,

Love, Medin, & Gureckis, 2004a, b; Nosofsky, Gluck,

Palmeri, McKinley, & Gauthier, 1994a; Shin & No-

sofsky, 1992), our study showed that worthwhile re-

search can benefit from the measure of response times

using an explanation based on rule decompression.

Our results also cast some doubt on research that

confirmed prototype or exemplar theories by comput-

ing patterns of mean reaction times for group of sub-

jects. Nosofsky, Palmeri, and McKinley (1994b, p. 54)

also indicated that good fits of exemplar models may

result from averaging over the responses of different

subjects. Our results show an interesting link between

the static serial model and exemplar theories. The

static serial multi-agent model provides a detailed

description of the cognitive processes underlying

decision making about category membership. The

model describes how dimensions are ordered serially to

induce the minimal rule without relying on similarity as

an explanatory principle. This is the major contrast

between the multi-agent model investigated here and

exemplar/prototype theories, because the complexity

of computation of similarities is the most criticized part

of exemplar/prototype models.

We find in our data a very good correlation between

the static serial model and GCM for mean response

times of stimulus classification. However, the three

experiments (especially the third one) show that mean

response times reflect a mixture of static serial deci-

sions and not the GCM patterns.

The static versus dynamic issue

An advantage of the multi-agent models (over the

most recent description of the logical complexity of

Boolean concepts, e.g., Feldman, 2000) is that they

allow one to address the issue of the nature of infor-

mation processing (static or dynamic) in computing

disjunctive formulas. The models in the present study
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offer several ways of compressing a given sample space

by a logical rule, depending on whether the rule is

computed in a static or a dynamic way. To put it sim-

ply, the static model constrains agents to communicate

using the same order for all examples of a given con-

cept whereas the dynamic model allows agents to be

ordered differently from one example to another. The

goal of both models is to use the minimal amount of

information to classify the list of examples of a given

concept. To reach this goal, the dynamic model can

vary the ordering of agents from one example to an-

other whereas the static model cannot.8

The dynamic model leads to the most highly com-

pressed formulas. However, the results showed that the

static model, which imposes a fixed information-pro-

cessing order, best fits the data, even if it does not lead

to the maximal compression of information in a rule.

So why do the less compressed rules inherent in static

serial processing prevail over those in dynamic pro-

cessing? Mathy and Bradmetz (2004) invoke the use of

constant patterns in natural language to explain why

the static model prevails. Ashby, Alfonso-Reese, Tur-

ken, and Waldron (1998) support this idea by a neu-

ropsychological theory of categorization that assumes

that people have a verbal system based on explicit

reasoning and a nonverbal implicit system that uses

procedural learning.

Secondly, Mathy and Bradmetz (2004) showed that

the sum of computations in the static serial model is

very economical compared with the dynamic one. The

serial functioning is equivalent to the resulting com-

putation of an ordered binary decision diagram that

orders the most informative variables first in a decision

tree (OBDD, see Huth & Ryan, 2000; Bryant, 1986)

with pruning carried out by computing entropy. This

method avoids the combinatorial explosion coming

from the comparison of the set of possible trees (for all

possible ordering of variables) before obtaining the

smallest path for a given stimulus. In concurrent

models, the dynamic model is either implicit (Feldman,

2000) or obvious in models based on neural networks

(Gluck & Bower, 1988a, b; Nosofsky et al., 1994a, b).

Even in the early models (Bourne, 1970; Bruner et al.,

1956; Hovland, 1966; Levine, 1966; Shepard et al.,

1961), a disjunctive class in a Boolean world is always

modeled as (blue � triangle = positive, for the concept

of Fig. 3), whereas the serial model would describe this

disjunctive rule as (blue � (red � triangle) = positive)

because the shape dimension cannot be processed as

long as the color dimension is not. To our knowledge,

no model fits the properties given by our static serial

multi-agent model. This is quite surprising because the

static serial model corresponds to monothetic decision

trees which are most often used in artificial intelligence

whereas the dynamic multi-agent model, very similar

to rule-based models, corresponds to polythetic trees

(in which multiple attribute values may label each tree

branch) which are almost never considered in artificial

intelligence for complexity reasons (see Duda, Hart, &

Stork, 2001). The reason why most psychological

models are not worried about polythetic decisions is

certainly because psychological experiments do not use

a lot of dimensions.

Conclusion and extensions

To conclude, we have considered throughout this

paper a model of conceptual complexity based on

compression of information, inspired by Kolmogorov

complexity and logical depth. We found that mea-

suring compression based on the constraints of WM is

more accurate than measuring complexity based on

minimal formulae in propositional logic. We refined

the description of WM capacity, usually estimated by

a cardinal metric, by studying communication proto-

cols between memory slots. Communications are used

to induce the minimal decision tree corresponding to

a concept. We showed that decisions depend on

whether information is processed in a static or a dy-

namic way in WM. The question raised is whether the

order in which information is used in WM is constant

or variable. To the best of our knowledge, this dis-

tinction has never been made before (except, again, in

artificial intelligence where monothetic trees are dis-

tinguished from polythetic trees). Static and dynamic

models lead to different patterns of response times

when classifying stimuli. The static serial model

proved to be the more accurate, suggesting that pieces

of information are processed in a fixed order in WM.

The last experiment also showed that response times

produced by the exemplar model could be explained

as a mixture of different static serial strategies. Fi-

nally, a better description of information stacking

should be developed to explain details about static

serial processing of information. To go further, the

model could be applied to study the nonindependence

of stimulus properties found in human concept

learning (Love & Markman, 2003), because the model

is well suited to the hierarchical processing of

dimensions.

8 There is an analogy with variable typing in computer science.
Static-typed variables are defined at compile-time and remain
unchanged throughout program execution, whereas dynamic
variables are defined at run-time.
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Appendix: Compressibility and complexity

A unifying principle across many areas of cognitive

science is that much of induction processing concerns

compression (Chater & Vitányi, 2003) and this princi-

ple is followed in many applications (Li & Vitányi,

1997). Let’s see how the notion of compression can be

inserted into a general theory called algorithmic com-

plexity. Imagine N people represented in a diagram

simply as dots and each two-way communication link

as a line connecting two dots. The resulting diagram

could be specified by the complexity of a pattern of

connection. Everyone will agree that a pattern with a

lot of connections is complex, but also that having all

dots connected is just as simple as having no dots

connected (Gell-Mann, 1994). This reasoning suggests

that at least one way of defining the complexity of a

system is to make use of the length of its description,

since the phrase ‘‘all dots connected’’ is of about the

same length as ‘‘no dots connected’’. Computer scien-

tists (e.g., Chaitin, 1974, 1987, 1990; Delahaye, 1993,

1994) consider a particular object described by a string

of symbols and ask what programs will cause the

computer to print out that string and then stop com-

puting. The first and still classic measure of complexity

that was introduced by Kolmogorov is roughly the

shortest computer program capable of generating a

given string (Kolmogorov, 1965). The length of the

shortest program is the algorithmic complexity of the

string or ‘‘Kolmogorov complexity’’. It corresponds to

the difficulty of compression of a representation. Some

strings of a given length are incompressible. In other

words, the length of the shortest program that will

produce one of these strings is one that says PRINT

followed by the string itself. Such a string has a maxi-

mum Kolmogorov complexity in relation to its length,

given that there is no algorithm that will simplify its

description. It is called a random string precisely be-

cause it contains no regularity that enables it to be

compressed.

Kolmogorov complexity is a measure of random-

ness, but randomness is not what is usually meant by

complexity. In fact, it is just the nonrandom aspects of

an object that contributes to its effective complexity

(e.g., its structure), which can be characterized as the

description of the regularities of that object. Bennett

complexity shadows this type of complexity linked to

the fact that an object can be highly structured, but still

difficult to compute. The inadequacy of Kolmogorov

complexity is striking when considering that the com-

plexity of a string can be very high in view of the

computation it needs even if the program is very short.

For instance, the string of the first hundred million

digits of p has a small Kolmogorov complexity, but the

time needed for the program to produce the digits is

high. A fractal can also be represented by a short

algorithm, but it takes a long time to compute. This

computational content is called logical depth, orga-

nized complexity, or Bennett complexity (Bennett,

1986). Logical depth can be summed up by the time

taken to decompress an object described by a minimal

algorithm. Logical depth is low when the algorithm has

few computations to do. In physics, the question of

existence of regularities in the world reduces to

knowing if the world is algorithmically compressible

(Davies, 1989; Wolfram, 2002). It is hence reasonable

to ask whether our mental model of the world is itself

an algorithmic compression.

In conclusion, Kolmogorov and logical depth are

two complementary ways of understanding the com-

plexity of objects. Theoretically, the length of a rule

and its decompression time are respectively estimates

of the Kolmogorov and the logical depth of a concept.
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